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ABSTRACT

The marshes of southern Iraq are of great value due to their roles in the economy, environment, heritage, tourism, 
and agriculture. However, the region has witnessed remarkable transformations in land cover, influenced by human 
interventions and natural environmental factors. In this research, the Central Marshlands were selected for study and 
monitoring. These Marshes form the Mesopotamian Marshes, a vital part of the Tigris-Euphrates river system. This area 
formerly covered an area of approximately 3,000 km2 and was once home to the lives of Marsh Arabs and their animals. 
The primary objective of this study was to compile a set of satellite images covering the same marshland region over 
several decades. The data used includes images captured by various Landsat missions: MSS (1975), TM (1983 & 
1993), ETM+ (2003), and the Operational Land Imager (OLI) from Landsat 8 (2015). Satellite images were combined 
and pre-processed through steps such as layer stacking to create composite images from multiple bands. Several image 
classification methods were applied, and the classification results showed a significant and unprecedented increase in the 
percentage of water in the marsh, reaching 16% in 2003. This was combined with vegetation identification techniques, 
including the identification of vegetation boundaries to detect areas of dense vegetation. In addition, the relative depth 
of the water was measured to estimate marsh water levels, with the best result obtained in 2003. The normalized mean 
vegetation index (NDVI) calculated in this study had its best value in 1984 due to the spread of reeds and papyrus 
during this period. Papyrus is the raw material in the sugar industry, providing a significant economic boost.
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1.	 Introduction
The uninhabited, remote, and often extremely inac-

cessible nature of certain land-cover types—such as dense 
tropical forests, rugged mountain ranges, expansive des-
erts, vast stretches of natural vegetation, and large marine 
and coastal areas—presents significant limitations for col-
lecting accurate, consistent, and comprehensive ground-
based statistics and direct observational data. These regions 
frequently lack human settlements, roads, or infrastructure, 
making them logistically difficult, dangerous, or econom-
ically impractical to access regularly for scientific surveys 
or monitoring efforts. In some cases, political instability or 
environmental hazards, such as extreme weather or wild-
life, can further complicate data collection. As a result, 
large portions of the Earth’s surface remain poorly studied 
or underrepresented in traditional datasets, leaving critical 
knowledge gaps about how these areas are changing in re-
sponse to natural processes and human-induced pressures 
such as climate change, resource exploitation, and popula-
tion expansion. This lack of accessible data limits the abili-
ty to make informed decisions regarding land management 
and conservation strategies, which are essential for sustain-
able development in many of these regions.

Given these challenges, there has been a significant 
and ongoing shift toward utilizing remotely sensed data as 
a primary means of observing, measuring, and analyzing 
the Earth’s surface. Remote sensing involves the use of 
sensors mounted on aircraft or, more commonly, satellites 
orbiting the planet, which capture images and other forms 
of data, such as thermal, radar, and multispectral informa-
tion, across a wide range of spatial and temporal scales. 
These sensors can monitor even the most isolated and vast 
land areas on a consistent basis, enabling the collection 
of repeatable, long-term datasets that would otherwise be 
impossible or highly impractical to obtain. This approach 
not only provides a bird’s-eye view of global and region-
al landscapes but also allows for the early detection of 
patterns and trends that may indicate environmental deg-
radation or ecological change. Increasingly, the ability to 
monitor land-cover and land-use changes through satellite 
observation has become an essential tool for addressing 
challenges like desertification, deforestation, and wetland 
loss, providing valuable insights into both the causes and 

impacts of these changes [1–4].
The Iraqi Marshlands, including the Central (Qurna), 

Hawizeh, and Hammar Marshes, collectively forming the 
Mesopotamian Marshes (see Figure 1(a)), are of immense 
ecological, cultural, social, and economic importance. 
Recognized as one of the most biodiverse ecosystems in 
the Middle East, these wetlands serve as a critical habi-
tat for migratory birds and endemic species (see Figure 
1(b)), while also sustaining the traditional livelihoods of 
the Marsh Arabs. For centuries, these communities have 
depended on the marshes for water buffalo rearing, rice 
cultivation, and fishing, with their unique cultural identity 
deeply intertwined with the wetland environment. How-
ever, the marshlands face significant threats from human 
activities and environmental changes, including upstream 
dam construction, water diversion projects, and climate 
variability. These factors have contributed to drastic alter-
ations in water levels, vegetation cover, and overall ecosys-
tem health. Beyond their cultural value, the marshes play 
a vital role in climate regulation, carbon sequestration, and 
supporting livestock production, particularly buffalo graz-
ing, which relies on nutrient-rich aquatic vegetation such 
as reeds and papyrus. To assess these changes, this study 
employs remote sensing techniques (see Table 1), ana-
lyzing a time series of satellite imagery spanning several 
decades. By processing and classifying these images, the 
research identifies key trends in land cover, water extent, 
and vegetation density, providing insights into the marsh-
lands’ ecological transformations. The findings contribute 
to a deeper understanding of the marshes’ resilience and 
vulnerability, offering valuable data for conservation and 
sustainable management efforts. 

Table 1. The details and information about the satellites used in 
image capturing.

Original 
Images Conversion from Gaussian and CGS EMU to SI

Marshes 
(1975)

Landsat 1-5 Multi-Spectral Scanner 
(MSS) 28-Jul-1973

Marshes 
(1993) Landsat 4-5 Thematic Mapper (TM) 28- Jul-1993

Marshes 
(2003)

Landsat 7 Enhanced Thematic Mapper 
Plus (ETM+) Scan Line Corrector on 
(SLC-On)_1999-2003, 29- May- 2003

Marshes 
(2015)

Landsat 8 OLI (Operational Land Imager) and 
TIRS (Thermal Infrared Sensor), 27-Sep-2015
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(a)

(b)
Figure 1. (a) The studied area “central marshes southern Iraq”; (b) Some natural pictures of the studied area.

2.	 Materials and Methods
Five satellite images were collected using different 

sensors, each from different periods to capture various 
stages of environmental change and land-cover dynamics 
across the study area. The specific satellites and sensors 
used are as follows:

i.	 Landsat MSS (1975): This is the earliest image from 
the Landsat Multi-Spectral Scanner (MSS), which 
offers moderate-resolution imagery in four spectral 
bands. It provides valuable insight into land-cover 
changes from the mid-1970s.

ii.	 Landsat Thematic Mapper TM (1983 and 1993): 
This sensor, an upgrade to MSS, provided enhanced 
capabilities, including seven spectral bands and bet-
ter spatial resolution. It allowed for more detailed 
observation of land cover changes and vegetation 
health during the late 1980s and early 1990s.

iii.	Landsat 7 Enhanced Thematic Mapper Plus ETM+ 
(2003): With its improved spatial and radiometric 
resolution, the ETM+ sensor offered higher accuracy 
for monitoring land-use and land-cover changes at a 
finer scale, making it ideal for tracking alterations in 
the marshes and surrounding areas.

iv.	 Landsat 8 Operational Land Imager (OLI) and Ther-
mal Infrared Sensor (TIRS) (2015): The most recent 
satellite image combines the OLI for high-resolution 
visible, near-infrared, and shortwave infrared bands 
and the TIRS for thermal infrared data. This sensor 
suite provided comprehensive coverage, allowing 
for more precise monitoring of temperature changes, 
water distribution, and vegetation dynamics across 
the marshlands.

All the images collected from these various Landsat 
sensors cover the study area (see Figure 2), which in-
cludes the southern Iraq marshes, and require rectification 
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and calibration to ensure accurate comparisons over time. 
The rectification process aligned the images to geograph-
ic coordinates, ensuring that they could be overlaid and 
compared accurately, while calibration helped account for 
atmospheric effects and sensor-specific errors. The study 
area focuses on the Central Marshes, a vital ecological re-
gion located at the confluence of the Tigris and Euphrates 
rivers, which forms the core of the Mesopotamian wetland 
ecosystem. Geographically, the marshes are bounded by 

the Euphrates River to the south and the Tigris River to the 
east, with the area forming a rough triangular shape be-
tween the cities of Al-Nasiriyah, Qalat Saleh, and Al-Qur-
nah. This positioning is crucial, as the marshes act as an 
interface between the two great rivers, receiving water 
primarily from the distributaries of the Tigris River -spe-
cifically the Shatt-al-Muminah and Majar-al-Kabir branch-
es- and from the Euphrates River along their southern 
boundary.

Figure 2. The five original images of the studied area were captured in different periods.

Covering an area of approximately 3,000 km², the 
Central Marshes are subject to seasonal fluctuations in 
water coverage, expanding to over 4,000 km² during flood 
periods. These wetlands are of immense ecological im-
portance, as they serve as a critical habitat for a wide va-
riety of species, especially waterfowl. They act as a vital 
breeding, aggregation, and wintering habitat for numerous 
migratory waterfowl species, which rely on the marshes 
for food, shelter, and nesting. The biodiversity supported 
by the marshes is essential for maintaining the ecological 
health of the region, providing services such as flood mit-
igation, groundwater recharge, and carbon sequestration. 
These ecosystems are integral to both local and regional 
environmental sustainability, as well as to the livelihoods 

of people who rely on them for agriculture and fishing [5,6].
The study area is geographically located with the upper 

left coordinates at 662,640.00E, 3,493,710.00N, and the 
lower correct coordinates at 733,230.00E, 3,415,350.00N, 
by the Universal Transverse Mercator (UTM) coordinate 
system. These precise coordinates help define the exact 
boundaries of the marshland areas under observation and 
provide a foundation for spatial analysis and interpretation 
of the satellite imagery collected across different periods.

2.1.	Image Rectification 

Rectifying Landsat imagery is a crucial step to en-
sure that satellite images align accurately with real-world 
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coordinates, making spatial analysis more reliable. The 
process begins by creating an ortho-rectified base image, 
which corrects distortions caused by sensor angle, terrain 
variations, and atmospheric conditions. This results in 
a map-like image that serves as a reference for aligning 
other photos. In the next step, all additional pictures are 
geometrically adjusted to match this base using the PCI 
OrthoEngine and its precise orbital modeling tools, ensur-
ing consistent alignment across different periods and sen-
sors. Ground Control Points (GCPs) are then identified and 
matched using cross-correlation techniques to fine-tune the 
accuracy. To ensure high precision, the final output under-
goes both visual checks and automated similarity assess-
ments—an essential step for applications like land cover 
analysis and monitoring changes over time [4].

2.2.	Image Calibration

Ideally, in remote sensing, calibrating satellite images 
to standard reflectance units is essential for making accu-
rate and consistent comparisons across different times and 
sensors. While full calibration is ideal, many change detec-
tion studies often use a more straightforward method—nor-
malizing the raw digital numbers (DN) to match a reference 
image. This approach is usually sufficient for identifying 
changes in land cover. Radiometric correction generally 
involves adjusting for atmospheric conditions, sensor vari-
ations, and geometric distortions. One crucial step in this 
process is Top-of-Atmosphere (TOA) reflectance calibra-
tion, which accounts for changes in the Earth-sun distance 
and solar angle. These factors affect how much sunlight is 
reflected off the Earth’s surface, so correcting for them im-
proves the reliability of comparing images taken under dif-
ferent lighting conditions or at other times [4–7].

The TOA reflectance calibration procedure involves 
a specific calculation that incorporates the following key 
variables:

1.	The sun zenith angle for each pixel in the image rep-
resents the angle between the Sun and the vertical line 
from a given point on the Earth’s surface.

2.	The sun azimuth angle for each pixel describes the 
direction of the Sun relative to the North, essentially 
providing information about the Sun’s position in the 
sky at the time the image was captured.

3.	The distance from the scene center to the Sun changes 
throughout the year as the Earth orbits the Sun. This 

distance is important because it affects the amount of 
solar radiation that reaches the Earth’s surface.

Radiometric calibration is a key step in accurately 
interpreting Landsat images. It corrects for variations in 
solar angles and the Earth-sun distance across the scene, 
ensuring consistent brightness and reflectance values. Each 
spectral band—whether in the visible, near-infrared, or 
thermal infrared range—is calibrated separately to main-
tain accuracy. Adjusting the raw digital values based on 
solar geometry reduces the impact of environmental and 
sensor-related factors. Radiometric calibration is essential 
for comparing images over time or across different loca-
tions, as it ensures reliable results for land cover change 
detection and enhances the overall quality of the analysis [8].

2.3.	Image Classification

“Image classification” is a fundamental process in 
remote sensing and computer vision that aims to automat-
ically categorize all pixels in a digital image into distinct, 
meaningful classes based on their spectral, spatial, and 
contextual attributes. This process relies on spectral signa-
tures, unique patterns of electromagnetic energy reflected 
or emitted by different surface materials, which serve as 
fingerprints to distinguish one land cover type from an-
other. These signatures are derived from multispectral or 
hyperspectral sensor data, where each pixel’s reflectance 
values across different wavelengths define its class mem-
bership. The classification process is critical for applica-
tions such as land cover mapping, environmental monitor-
ing, urban planning, and agricultural assessment.

There are two primary methodological approaches to 
image classification: supervised classification (the method 
adopted in this research) and unsupervised classification, 
each with distinct advantages and limitations. Unsuper-
vised classification is a data-driven approach that identifies 
inherent spectral categories within an image without re-
quiring prior knowledge of land cover types. This method 
typically employs clustering algorithms, such as k-means 
or ISODATA, which group pixels based on their spectral 
similarity in feature space. These techniques iteratively 
estimate the spectral category of each pixel while simulta-
neously determining the optimal number of spectral clus-
ters and their spatial distribution within the dataset [9,10]. 
Unsupervised classification is beneficial for exploratory 
analysis when ground truth data is unavailable or when the 
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spectral characteristics of the study area are unknown.
In contrast, supervised classification, the most widely 

used approach for quantitative remote sensing analysis, 
leverages pre-existing knowledge to train algorithms that 
assign each pixel to a predefined set of land cover catego-
ries. This method requires representative training samples 
-collected from field surveys, high-resolution imagery, or 
existing maps- to teach the classifier how different land 
cover types manifest spectrally. A diverse range of algo-
rithms is available for supervised classification, including 
parametric methods that model the probability distribution 
of spectral data for each class (e.g., Gaussian maximum 
likelihood) and non-parametric techniques that partition 
the multispectral feature space using decision boundaries 
(e.g., support vector machines, random forests, or artificial 
neural networks) [11]. The choice of algorithm depends on 
factors such as data dimensionality, class separability, and 

computational efficiency.
In this study, we employed two robust supervised clas-

sifiers -the Mahalanobis distance classifier and the maxi-
mum likelihood classifier (MLC)- to categorize the study 
area into four distinct land cover classes: water, vegetation, 
soil, and dry soil. The Mahalanobis distance classifier is 
a statistical method that accounts for covariance between 
spectral bands, making it effective for distinguishing class-
es with overlapping spectral responses. Meanwhile, MLC 
assumes a Gaussian distribution of training data and calcu-
lates the probability of a pixel belonging to each class, as-
signing it to the most likely category. The classification re-
sults, presented in Figures 3 and 4, demonstrate the spatial 
distribution of land cover across the study area. In contrast, 
Figures 5 and 6 provide detailed statistical distributions of 
pixel values for each class, highlighting their spectral sepa-
rability and classification accuracy.

Figure 3. The classification results using the Mahalanobis classifier.

Figure 4. The classification results using a maximum likelihood classifier.
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2.4.	Monitoring the Vegetation Using NDVI

The Normalized Difference Vegetation Index (NDVI) 
is the most widely used satellite-derived spectral index for 
assessing vegetation health, density, and photosynthetic 
activity on a global scale [12,13]. As a standardized metric, 
NDVI quantifies the presence and vigor of green vegeta-
tion by exploiting the distinct spectral reflectance charac-
teristics of chlorophyll-rich plant leaves across different 
wavelengths.

Healthy, dense vegetation exhibits strong chlorophyll 
absorption in the visible red band (RED, ~600–700 nm) 
while reflecting a significant portion (typically 25–50%) of 
near-infrared radiation (NIR, ~700–1100 nm) due to the in-

ternal scattering of light by leaf cell structures. In contrast, 
stressed, sparse, or non-photosynthetic vegetation reflects 
more red light (due to reduced chlorophyll absorption) and 
less NIR radiation (due to disrupted cell structures or re-
duced leaf area). Bare soil, urban areas, and water bodies 
exhibit distinctly different reflectance patterns, with soils 
often showing moderate reflectance in both bands and wa-
ter absorbing most NIR and red wavelengths.

The NDVI is calculated as a normalized ratio of the 
difference between NIR and red reflectance to their sum, 
expressed by the formula [14]:

(1)

This index ranges from −1 to +1, where:

Figure 5. The statistical distribution of the Mahalanobis classifier in different periods.

Figure 6. The statistical distribution of the Maximum likelihood classifier in different periods.
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i.	 Values > 0.6 indicate dense, healthy vegetation (e.g., 
forests, crops in peak growth).

ii.	 Values 0.2–0.5 represent moderate vegetation (grass-
lands, agricultural fields).

iii.	Values near 0 suggest bare soil or non-vegetated sur-
faces.

iv.	 Negative values typically correspond to water bod-
ies (due to higher red reflectance than NIR).

NDVI’s simplicity, robustness, and sensitivity to vege-
tation dynamics make it indispensable for applications like 
crop monitoring, drought assessment, deforestation track-
ing, and climate change studies [12,13]. However, limitations 
include saturation effects in dense canopies and sensitivity 
to atmospheric conditions, prompting the development of 
enhanced indices like EVI (Enhanced Vegetation Index) 
for specific use cases.

The vegetation index is calculated using reflectance 
values from near-infrared and red spectral bands. The 
NDVI values typically range from −1 to 1, where: Increas-
ing positive values indicate greater vegetation density and 

health, and Negative values represent non-vegetated sur-
faces (water, barren land, ice, snow, or clouds). NDVI data 
are typically used for qualitative comparisons, either to 
monitor vegetation changes over time or to compare differ-
ent regions with similar characteristics [15–21].

In this study, NDVI was employed to distinguish be-
tween healthy and unhealthy vegetation within the research 
area. The results of this analysis are presented in Figure 7.

2.5.	Vegetation Delineation

Vegetation identification or delineation can be used 
to detect plant presence and visualize vegetation vigor 
quickly. The analysis software provides tools to generate 
graphics for reports and presentations easily. Each image 
represents a specific period in Karbala’s seasonal cycle, 
categorized into four distinct seasons. The NDVI produc-
es values ranging from −1.0 to 1.0. Pixels with no NDVI 
value between −1.0 and 0.249, whereas pixels with strong 
vegetation tend to be 1.0. The results of the vegetation 
mapping analysis are presented in Figure 8.

Figure 7. The results of NDVI applied to different periods.
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Figure 8. The results of vegetation delineation for the center marsh image in different periods.

2.6.	Relative Water Depth

Relative Water Depth (RWD) is a remote sensing 
technique that estimates water depth in lakes, rivers, and 
oceans by analyzing light attenuation through the water 
column. This method is essential for bathymetric mapping, 
environmental monitoring, coastal management, and water 
depth/height estimation [22–24]. The optical principles under-
lying this technique can be summarized as:

i.Water absorbs and scatters light differently across 
various wavelengths

ii.Shorter wavelengths (blue/green spectrum) penetrate 
deeper than longer wavelengths (red/near-infrared)

iii.The reflectance ratio between different wavelengths 
correlates with water depth

Lyzenga D. R. (1981) [21] developed a semi-analytical 
approach based on radiative transfer theory that accounts 

for water’s optical properties. This work established the 
fundamental equation for calculating Relative Water Depth 
(RWD):

ln(L(λi) − L∞(λi)) = ai + bi .d (2)

Where:
- L(λi) : radiance at wavelength λi

- L∞(λi): deep-water radiance
- ai, bi: coefficients related to water attenuation
- d: water depth
Satellites such as Landsat (TM/ETM+/OLI), Senti-

nel-2 (MSI), and MODIS provide excellent data sources 
for this technique. The method yields optimal results in 
clear, shallow waters (20–30 meters depth), though re-
flections from seabed features like sand and seagrass may 
affect results [21]. Figure 9 demonstrates the application re-
sults of this technique.
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Figure 9. The results of applying the relative water depth technique on the studied area for the period (1973–2015).

2.7.	Relative Water Depth (RWD) Limitations

Remote depth measurement (RWD) methods rely 
heavily on the optical penetration of light into water bod-
ies. In turbid or sediment-laden waters, light may not 
penetrate deeply enough, reducing the accuracy of depth 
estimates. Areas with high suspended sediments, plankton, 
or colored dissolved organic matter (CDOM) can distort 
reflectance signals. Surface conditions, such as sun glare, 
waves, or wind-induced undulation, can introduce noise 
into RWD images, affecting the quality and consistency of 
RWD calculations.

Sensor accuracy, radiosensitivity, and atmospheric 
correction errors can affect the accuracy of deep-water 
measurements. So this method is most effective in shallow 
water (typically less than 20 meters), where light can pen-
etrate the bottom. Deep water tends to absorb most of the 
light, making deep-water measurements unreliable beyond 
this range [25].

3.	 Results and Discussion
Changes in the central marshes of Iraq have had sig-

nificant social and economic impacts on local communi-
ties. As water levels fell, many were forced to leave their 
homes, losing traditional livelihoods such as fishing, herd-
ing, and collecting reeds. This led to widespread poverty, 
reduced access to clean water, and deteriorating health 
conditions. Access to education and basic services became 
more difficult, and the unique Marsh Arab culture began 
to disappear. Women were particularly affected, facing 
greater challenges due to the loss of income and increased 
responsibilities. 

The Central Marshes of Iraq represent an ecologically 
significant area. This research provides a comprehensive 
study and detailed analysis of land cover classes (soil, wet 
soil, vegetation, and water) using two supervised classi-
fication methods. The results of the first technique, “Ma-
halanobis Distance Classifier,” show that the percentage 
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rate of class soil and wet soil together was 59% for 1973, 
66% for 1984, 88% for 1993,66% for 2003, and 79% for 
2015. It can be noticed that the maximum rate of soil class 
was recorded for 1993, compared with the water and the 
vegetation, which had decreased because of the policies 
followed by the previous government, where the water had 
been cut off. The marshes had been drained, which led to 
desertification of the area.  As for the water category, we 
note that the highest classification rate was in 2003, due to 
the reflow of water into the marshes, which led to the re-
covery of the marshes and filling them with water during 
this period. As for the variety of crops or vegetation class-
es, we notice a decrease in the amount that occurred in 
1993 due to the lack of water after the process of draining 
the marshes. 

Regarding the second classification method employed 
in this research, the statistical distribution of classified land 
cover categories revealed the following patterns: the pro-
portion of the soil class with wet soil was 58% for 1973, 
61% for 1984, 59% for 1993, 68% for 2003, and 68% for 
2015. There is some convergence between the two classi-
fication methods in terms of soil and wet soil ratio. On the 
other hand, the results of the statistical distribution show 
that the maximum value of vegetation was recorded in 
2003 according to the second classification method.

NDVI analysis revealed the highest values (approach-
ing 1) in 1984, indicating robust agricultural recovery with 
crops like reeds and rice. Vegetation delineation results 
corroborated these findings, with 1984 images showing 
significantly greener and brighter areas compared to other 
years.

Comparative analysis suggests the Mahalanobis clas-
sifier provides more realistic results than the Maximum 
Likelihood approach. Both methods indicate declining 
water percentages, attributable to climate change impacts, 
including reduced rainfall and increased temperatures.

It is noted that the relative water depth (RWD) tech-
nique achieves good results in swamp areas due to their 
shallow nature. Several factors can affect the values mea-
sured using this method, including plankton and algae 
present at the bottom of the swamp, which affect the re-
flected wavelengths. Water turbidity and the proportion of 
mud and sediment present in swamp water can also nega-
tively affect the measured values. 

Despite these limitations, RWD has gained recognition 
as a valuable method and is now implemented in major re-
mote sensing software packages like ENVI and ArcGIS.

4.	 Conclusions

This should clearly explain the main conclusions of 
the article, highlighting its importance and relevance. The 
study of the Central Marsh in southern Iraq has provided 
insight into the significant land cover changes that have 
occurred over several decades due to both human activities 
and natural conditions. By utilizing a time series of Land-
sat satellite imagery (1975–2015), this research tries to 
submit a periodic monitoring and analysis of the variations 
in vegetation cover, water extent, and marshland health 
through advanced remote sensing techniques, including 
NDVI analysis, water depth estimation, and vegetation 
boundary identification. The results highlight the crucial 
transformations in the marshlands, emphasizing the im-
pacts of water management policies, climate variability, 
and human intervention on this culturally and ecologically 
vital region. The findings underscore the urgent need for 
sustainable management strategies to conserve and restore 
the Mesopotamian Marshes, ensuring their ecological 
functions and the livelihoods of local communities.

This research helps in a deeper understanding and 
more accurate monitoring of the dynamics of marshlands 
in southern Iraq and provides a foundation for future con-
servation efforts. Further studies incorporating higher-reso-
lution imagery and ground-based validation could enhance 
the accuracy of monitoring systems, supporting more ef-
fective policy decisions for the protection of this critical 
wetland ecosystem.
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