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Metropolis-Hastings algorithms are slowed down by the computation 

of complex target distributions. To solve this problem, one can use the 

delayed acceptance Metropolis-Hastings algorithm (MHDA) of Chris-

ten and Fox (2005). However, the acceptance rate of a proposed value 

will always be less than in the standard Metropolis-Hastings. We can �x 

this problem by using the Metropolis-Hastings algorithm with delayed 

rejection (MHDR) proposed by Tierney and Mira (1999). In this paper, 

we combine the ideas of MHDA and MHDR to propose a new MH algo-

rithm, named the Metropolis-Hastings algorithm with delayed acceptance 

and rejection (MHDAR). The new algorithm reduces the computational 

cost by division of the prior or likelihood functions and increase the ac-

ceptance probability by delay rejection of the second stage. We illustrate 
those accelerating features by a realistic example.
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1. Introduction

M
H algorithm (Hastings, 1970; Metropolis, et 

al, 1953) has solved integral calculation in 

the complex posterior.[1,2] However, one of the 

most important and challenging issues is to compute the 

rate of acceptance. The acceptance probability of the stan-

dard MH algorithm is expressed as

a x y, min 1,=
 
 
 

( ) ( | )

( ) ( | )x q y x

y q x y

     (1.1)

Where  represents the target density function (that is, 

the posterior distribution),  represents the proposal distri-

bution. In the acceptance and rejection of MH algorithm, 

we always need to calculate and thus need to calculate 

rations of . But it is a complex task with large amount of 

computation, e.g., the posterior distribution involves an-

other integral.

To reduce the computational cost, the delayed accep-

tance MH algorithm of Christen and Fox (2005) is a two-

stage Metropolis-Hastings algorithm in which, typically, 

proposed parameter values are accepted or rejected at the 

�rst stage based on a computationally cheap surrogate for 

the likelihood.[3] Detailed balance with respect to the true 

posterior is ensured by a second accept-reject step, based 

on the computationally expensive likelihood, for those 

parameter values which are accepted in the �rst stage. De-

layed acceptance algorithms thus provide draws from the 

posterior distribution of interest whilst potentially limiting 

the number of evaluations of the expensive likelihood. Al-

though the amount of computation is reduced, the accep-

tance rate is also reduced compared to the standard MH 

algorithm. For the purpose of improving the acceptance of 

MH algorithm, we can use Metropolis-Hastings algorithm 
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with delayed rejection (MHDA) as defined by Tierney 

and Mira (1999).[4] In this paper we combine the ideas of 

MHDA with MHDR and propose a new MH method is 

the Metropolis-Hastings algorithm with delayed accep-

tance and rejection (MHDAR).

The new algorithm, involving two stages, reduces the 

computational cost by division the prior or likelihood 

function (that is, the �rst stage) and increase acceptance 

ratio by the second stage. We illustrate those accelerating 

features by a realistic example of two-dimensional distri-

bution.

2. Metropolis-Hastings Algorithm with De-
layed Acceptance and Rejection

In this section, we recall the Metropolis-Hastings algo-

rithm with delayed rejection and the Metropolis-Hastings 

algorithm with delayed acceptance, which are useful for 

our later discussions. And then we propose our new al-

gorithm, the Metropolis-Hastings algorithm with delayed 

acceptance and rejection.

2.1 Metropolis-Hastings Algorithm with Delayed 
Rejection

The Metropolis-Hastings algorithm with delayed rejection 

(MHDR), proposed by Tierney and Mira (1999), achieve 

this goal: when making a rejection decision, we use a dif-

ferent proposal distribution to generate a second candidate 

state instead of obtaining a duplicate sample and accepting 

or rejecting it based on the probability of an appropriate 

calculation. [4] Therefore, the update process of the MHDR 

algorithm is as follows:

Algorithm 2.1 Metropolis-Hastings Algorithm with De-

layed Rejection

(1) Generate y ~ q1(·|x0)

(2) Compute

 
a x y1 0 , min 1,=

 
 
 ( ) ( | )

( ) ( | )

x q y x0 1 0

y q x y1 0

(3) 

x1 =


x with probability a x y

y with probability a x y

0 1 0

, ( , );

, 1 ( , )

　　　  　

　　  　　 .−
1 0

If x1 ≠ y go to step 4, otherwise stop and output x1=y

(4) Generate y1 ~ q1(·|x0 ,y)

(5) Compute 

a x y y2 0 1( , , ) min 1,=
 
 
 ( ) ( | ) ( | , )(1 ( , ))x q y x q y x y a x y

( ) ( | y )q (x | y,y )(1-a (y ,y))

0 1 0 2 1 0 1 0

y q y1 1 1 2 0 1 1 1

−

(6)

x1 =


x with probability a x y y

y with probability a x y y

0 2 0 1

, ( , , );

, 1 ( , , )

　　　  　

　　  　　 .−
2 0 1

2.2 Metropolis-Hastings Algorithm with Delayed 
Acceptance

The MH algorithm with delayed acceptance is aimed at re-

duce the amount of computation. The delayed acceptance 

MCMC algorithm of Christen and Fox (2005) is a two-

stage Metropolis-Hastings algorithm in which, typically, 

proposed parameter values are accepted or rejected at the 

�rst stage based on a computationally cheap surrogate for 

the likelihood.[3]

In the section, we reduce the computational cost by 

division the prior or likelihood function in the �rst stage 

and increase acceptance ratio by the second stage. It is 

similar to Banterle et al. (2015). The update process of the 

MHDA algorithm is as follows:

Algorithm 2.2 Metropolis-Hastings Algorithm with De-

layed Acceptance

(1) Generate y ~ q1(·|x0)

(2) Compute

a x y1 0 , min 1,=
 
 
 1 0 0

1 0

( ) ( | )

( ) ( | )

x q y x

y q x y

(3) Take

x1 =


x with probability a x y

y with probability a x y

0 1 0

, ( , );

, 1 ( , )

　　　  　

　　  　　 .−
1 0

If x1=y go to step 4, otherwise stop and output x1=x0

(4) Compute 

a x y2 0 , min 1,=
 
 
 

( ) ( )

( ) ( )

y x

x y
1 1 0

0 1

(5) Take

x1 =


x with probability a x y y

y with probability a x y

0 2 0 1

, ( , );

, 1 ( , , )

　   　　  　

　　  　　 .−
2 0

So acceptance probability of MHDA is a(x0,y)=a1(x0,y)

a2(x0,y). 

2.3 Metropolis-Hastings Algorithm with Delayed 
Acceptance and Rejection

The Metropolis-Hastings algorithm with delayed accep-

tance and rejection (MHDAR) combines the ideas of 

MHDA and MHDR. It reduces the computing costs by 

a decomposition of the target function, increases rate of 

acceptance by the second stage of delayed rejection. The 

DOI: https://doi.org/10.30564/ret.v2i2.682
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update process of the MHDAR algorithm is as follows:

Algorithm 2.3 Metropolis-Hastings Algorithm with De-

layed Acceptance and Rejection

(1) Generate y ~ q1(·|x0)

(2) Compute 

a x y1 0 , min 1,=
 
 
 1 0 0

1 0

( ) ( | )

( ) ( | )

x q y x

y q x y

(3) Take

x1 =


x with probability a x y

y with probability a x y

0 1 0

, ( , );

, 1 ( , )

　　　  　

　　  　　 .−
1 0

If x1=y go to step 4, otherwise stop and output x1=x0

(4) Compute 

a x y2 0 , min 1,=
 
 
 

( ) ( )

( ) ( )

y x

x y
1 1 0

0 1

(5) Take

x1 =


x with probability a x y y

y with probability a x y

0 2 0 1

, ( , );

, 1 ( , , )

　   　　  　

　　  　　 .−
2 0

If x1 ≠ y go to step 6, otherwise stop and out put x1=y

(6) Generate y1 ~ q1(·|x0 y)

(7) Compute 

a x y y3 0 1( , , ) min 1,=
 
 
 ( ) ( | , ) ( | )(1 ( , )) ( , )

( ) ( | , ) ( | )(1- ( , )) ( , )

x q y x y q y x a x y a x y

y q x y y q y y a y y a y y

0 2 1 0 1 0 2 0 1 0

2 0 1 1 1 2 1 1 1

−

(8) Take

x1 =




y with probability a x y y

x with probability a x y y

, ( , , );　   　　  　

0 3 0 1, 1 ( , , )　　  　　 .−
3 0 1

We assume that the target distribution π and the pro-

posal density q(·|x) all admit densities with respect to the 

Lebesgue or counting measures. We also denote the target 

density by π.[5]

Let (xn)n≥1 be a Markov chain evolving on X with MH-

DAR algorithm Markov transition kernel P associated wit 

q hand π .i.e. for A B(X), where B(X) is the Boreal σ- 

�eld, on X.[6]

P x A P x A a x x a x x P x y A( , )  ( , ) (1  ( ,  ) )  ( ,  )  ( , , )0 1 0 2 0 1 1 0 1 2 0= + −∫ X

Theorem 2.1 The transition kernel of the MHDAR up-

date satis�es the reversibility with respect to target distri-

bution:[7]

(  ) ( ,  ) (  ) ( ,  ) x P x dx x P x dx0 0 1 1 1 0=      (2.1)

To prove Theorem 2.1, we have the following two lem-

mas.

Lemma 2.1  If x0 x1 X then 

( )  ( , ) ( )  ( , )x P x dx x P x dx0 1 0 1 1 1 1 0=      (2.2)

Proof: The form  of  Markov chain with  transition ker-

nel P1

P x dx q x x a x x dx q x x a x x dx I x1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 ( , ) ( , )  ( , ),  (- ( , )  ( , ), ) ( ).= +∫ ∫A X
A

From stage one of the MHDAR algorithm we know 

that the detailed balance condition

( )  ( , )  ( , ) ( )  ( , )  ( , )x q x x a x x x q x x a x x0 1 0 1 1 0 1 1 1 1 0 1 1 0=

 (2.3)

(1) It is obviously (2.2) established when x0=x1

(2) When x0 x1

a x x1 0 1, min 1,=
 
 
 

1 1 1 0 1

( ) ( | )

( ) ( | )

x q x x

x q x x

0 1 1 0      (2.4)

a x x2 0 1, min 1,=
 
 
 

( ) ( )

( ) ( )

x x

x x
1 1 0

0 1 1      (2.5)

Then, (2.3) using the identity 
b amin 1, min 1,

   
   
   b a

a b
=

, which is valid for any two positive numbers a and b, in 

(2.2) we have

 π(x0 ) P1 (x0,dx1) 

         =π(x0) q1 (x0,x1) α1 (x0,x1) α2 (x0,x1)

        =π(x1)P1 (x1,dx0).

 (2.6)

Lemma 2.2  Keeping in mind theorem 2.1 and lemma 

2.1, it remain to show that for any x0 x1 X and x0 x1 

then

( 0) (1  ( , ))  ( , )  ( , , )x a x x a x x P x y x dx∫X
− 2 0 1 1 0 1 2 0 1 1

= ( ) (1-  ( , ))  ( , )  ( , , )x a x y a x y P x y x dx1 2 1 1 1 2 1 0 0∫X

Where

P x y x q x x y a x y x2 0 1 2 1 0 3 0 1 ( , , )  (  | , )  ( , , )=     (2.7)

P x y x q x y x a x y x2 1 0 2 0 1 3 1 0 ( , , )  (  | , )  ( , , )=      (2.8)

Proof:

(1)y ≠ x0 , y ≠ x1

In this case we have :

( ) (1  ( , ))  ( , )  ( , , )x a x x a x x P x y x dx0 2 0 1 1 0 1 2 0 1 1∫X
−

= −( ) (1  ( , ))  ( , 1)  (  | , )  ( , , )x a x x a x x q x x y a x y x0 2 0 1 1 0 2 1 0 3 0 1∫X

= −( ) (1 ( , ))  ( , ) ( , , )x a x y a x y P x y x dx1 2 1 1 1 2 1 0 0∫X

DOI: https://doi.org/10.30564/ret.v2i2.682
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As desired.

(2) y=x0

In this case, the left-hand side of Lemma 2.2 is zero, 

since

P2(x0,x0,x1). The last equality holds because we have 

assumed that y ≠ x1. Let’s now analyze the righthand side 

of Lemma 2.2.

( ) (1 ( , ))  ( , ) ( , , )x a x y a x y P x y x dx1 2 1 1 1 2 1 0 0∫X
−

 ( ) (1  ( , ))  ( , )  (  | , )  ( , , ) 0= − =x a x y a x y q x x x a x x x1 2 1 1 1 2 0 0 1 3 1 0 0∫X

(3) y=x1

This case only needs to exchange x0 and x1 .Just like the 

second one, you can prove it in the same way.

Combining Lemmas 2.1 and 2.2, we prove Theorem 

2.1.

2.4 Expected Square Jumping Distance

In this section, when considering efficiency for MHDA, 

MHDR and MHDAR, we need to consider the execution 

time of the algorithm. So it measured ef�ciency through 

Eff, de�ned by Banterle et al.(2015).

Sherlock and Roberts (2009) focus on unimodal ellip-

tically symmetric targets and show that a proxy for the 

ACT in �nite dimensions is the Expected Square Jumping 

Distance (ESJD), de�ned as

where X and X' are two successive points in the chain 

and ||·|| represent the norm on the principal axes of the el-

lipse rescaled by the coef�cients βi so that every direction 

contributes equally. [5,8] 

We measured ef�ciency through following formula, it 

de�ned by Banterle et al. (2015).

Eff=ESJD/cost per iteration

3 Examples

In this section, to demonstrate the advantage of the 

MHDAR algorithm, we apply an example with target 

distribution f (x,y) ∝ exp(-10(x2
-y)2
-(y-1/4)4), f1 (y)=ex-

p(-(y-1/4)4) proposal distribution is a normal distribution 

with μ=0,σ2=0.75 and the number of iterations is 50000.

Figure 1. shows that MHDA, MHDR and MHDAR 

�tting of the target distribution and Figure 2 shows auto-

correlation plot of the MHDA, MHDR and MHDAR.

Figure 1. Fitting of target distribution

We generate samplers from target distribution using 

the three algorithms and calculate the acceptance rate of 

three algorithms in the following table. From the Table 1 

and the Figure 1, we can obtain that acceptance rate of the 

MHDAR algorithm outperforms the MHDA algorithm. 

Difference acceptance rate between MHDAR and MHDR 

is 0.00944. But computation time of MHDAR is just one-

third of MHDR.

Figure 2. Autocorrelation for each parameter

Table 1. Comparison between MHDA, MHDR and MH-
DAR in four aspects

Algorithms a (aver.) Time (aver.) ESJD (aver.) Eff

MHDA 0.215 8.424 0.43504 2582.14

MHDR 0.397 53.491 0.80076 748.50

MHDAR 0.388 18.376 0.72644 196.60

ESJD the expected square jumping distance, a is the 

acceptance rate, time is the overall computation time.

3.1 Convergence Diagnostics

We use the Geweke(1992) and the Heidelberger-Welch 

(1983) combining with the coda R package to test chain 

that generated by the MHDAR algorithm.[9,10] The geweke 

statistic value of each parameter (as shown in Table 2) and 

the Z-score scatter plot of each parameter are obtained 

(As shown in Figure 3). The absolute value of Z-Score of 

each parameter is less than 1.96, P value is greater than 

0.05. So the Markov chain of generated by MHDAR is 

convergence. It can be seen from Table 3 that the Heidel-

berger-Welch stability is all passed and the interval half-

DOI: https://doi.org/10.30564/ret.v2i2.682
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width test of the parameter is failed (where the halfwidth 

test is failed that indicates the corresponding con�dence 

interval does not satisfy the accuracy), which shows that 

the Markov chain generated by sampling is stable.

Table 2. Geweke’s statistic for each parameter and associ-
ate P-value

μ σ2

Z-score -0.0412 0.639

P-value 0.9671 0.5228

Figure 3. Geweke’s scatter diagram for each parameter

Table 3. Heidelberger-Welch stability and the interval 
half-width test

parameter
Stationarity 

test
p-value

Halfwidth 
test

Mean Halfwidth

μ passed 0.462 failed 0.00475 0.0111

σ2 passed 0.862 passed 0.247 0.0066

4. Conclusion

We propose a new MH algorithm combining the ideas of 

MHDA and MHDR, called MHDAR. The new algorithm, 

with two stages, reduces the computational cost by divi-

sion decomposes the prior or likelihood function (that is, 

the �rst stage) and increase acceptance ratio by the second 

stage. We illustrate those accelerating features by a realis-

tic example of two-dimensional distribution. The simula-

tion validates the theoretic results.
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