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ABSTRACT
To support agricultural development in Thailand, accurate data collection and analysis of land use are essential. 

Understanding the spatial distribution and growth patterns of key crops enables better planning and resource allocation. 
This study proposes a deep learning-based approach for land cover classification, specifically targeting three significant 
crops: rice, rubber, and palm. A Convolutional Neural Network (CNN) is employed to classify satellite imagery into 
these three categories. The datasets used in this research are derived from high-resolution Pleiades satellite imagery 
and consist of three independent datasets, each containing 200,000 image tiles of 100x100 pixels. For each crop type, a 
dedicated CNN model are trained and optimized, achieving classification accuracies exceeding 90%. After prediction, 
a post-processing step is implemented to merge tile-level classifications into continuous land cover maps. This enables 
a clearer spatial visualization of crop distribution. Furthermore, a clustering algorithm is applied to identify individual 
agricultural fields, which facilitates further analysis. Vegetation health and maturity are assessed using the Normalized 
Difference Vegetation Index (NDVI), from which the approximate age of the crops is inferred. These parameters are 
then used to estimate the potential agricultural yield or production for each field. To validate the approach, a large area 
of 100 square kilometers is analyzed, and the model’s classification results are compared against manually labeled ref-
erence data provided by the Thailand Space Agency. The comparison reveals a classification discrepancy of -12% for 
palm crops and approximately -20% for both rice and rubber, demonstrating the model’s high potential for scalable crop 
monitoring.
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1. Introduction

According to the United Nations, the global pop-
ulation is estimated to reach 8.5 billion by 2030 and 9.7 
billion by 2050. In this context, ensuring food security has 
become a critical challenge, requiring an increase in global 
food production [1]. Effective monitoring of agricultural 
land and production management plays a crucial role in 
addressing this issue [2]. However, boosting productivity 
without depleting finite resources remains a major challenge 
for agriculture. Precision agriculture, which leverages digi-
tal technologies such as remote sensing, offers a promising 
solution by optimizing agricultural performance [3].

Recent advances in remote sensing technologies—
deployed via satellites, aircraft, or drones—enable effi-
cient monitoring and detection of land characteristics [4]. 
The growing accessibility of land cover data has further 
expanded their applications [5]. In Thailand, for instance, 
these technologies have been widely utilized to study the 
evolution of crop types [6], map aquaculture zones [7], and 
conduct hydrological analyses [8]. Traditional mapping ap-
proaches often rely on multi-temporal observations and are 
primarily based on statistical models or index-based meth-
ods [9–12]. However, these methods may struggle to capture 
complex spatial patterns, particularly in heterogeneous 
landscapes, leading to misclassifications or inaccuracies [13].

CNNs have become a dominant approach in land 
classification due to their superior performance compared 
to traditional machine learning methods such as Support 
Vector Machines (SVM), Random Forest (RF), and logistic 
regression [14–17]. Studies demonstrate that CNNs achieve 
higher accuracy in various applications, including a 12% im-
provement over SVM in groundwater potential mapping [16] 
and better performance in assessing water quality in Bra-
zil’s Tietê River [14]. Beyond land classification, CNNs have 
significantly advanced agricultural management by auto-
mating tasks traditionally performed manually, reducing 
costs, and improving efficiency. Their applications include 
plant and weed recognition [18, 19], as well as tree counting 
for plantation monitoring [20].

For instance, oil palm tree detection—a critical task 
for plantation management—often relies on LeNet-based 
CNN architectures trained on high-resolution QuickBird 
imagery (0.3–2.4 m). These models, trained on datasets 

ranging from 3,000 to 19,000 image tiles, consistently 
achieve an accuracy of over 94% [21]. Similarly, in rice field 
monitoring—a priority for Asian food security—CNNs 
face challenges due to phenological variations across 
growth stages (tillering, heading, and harvest). An Recur-
rent Neural Networks (RNN) based study in West Java 
achieved 75% accuracy using 130,000 images spanning 
three growth stages [22]. In contrast, Enhanced-TransUnet 
(ETUnet), applied to drone imagery, classified combined 
stages with an F1-score of 94%, although individual stage 
detection dropped to 50–70% [23]. Another approach, FR-
Net, trained on 31,909 Landsat 8 tiles (256 × 256 pixels), 
achieved 88.4% accuracy but required high-performance 
Graphics Processing Units (GPUs), thereby increasing 
computational costs [24].

To further enhance accuracy, CNNs can integrate 
multispectral data or physical models [25]. Vegetation indi-
ces, for example, are often combined with CNN outputs to 
improve assessments of crop health and density, demon-
strating the flexibility of these methods in precision agri-
culture.

Vegetation indices are numerical measures derived 
from remote sensing data, typically satellite imagery [26]. 
These indices are valuable tools used in various fields, 
including agriculture, forestry, environmental monitoring, 
and land management. They provide useful insights into 
vegetation dynamics and can be used to study changes in 
vegetation over time and space. The fundamental prin-
ciple behind vegetation indices is that plants reflect and 
absorb different wavelengths of light [27]. In particular, they 
strongly absorb visible light for photosynthesis while re-
flecting a significant amount of near-infrared (NIR) light. 
Vegetation indices utilize these characteristics to calculate 
ratios or combinations of spectral bands from the remote 
sensing data to infer vegetation properties. One of the most 
well-known and widely used vegetation indices is the Nor-
malized Difference Vegetation Index (NDVI) [28]. NDVI 
has allowed for wide application in vegetative studies, as 
it is used to estimate crop yields (Peters et al., 2002) and 
the age and productivity of rice [29], palm age and nutrient 
deficiencies [30] or rubber stand age [31]. The relationship 
between NDVI and crop age stems from the predictable 
changes in canopy reflectance during plant development. 
Young crops exhibit low NDVI values during establish-

https://www.zotero.org/google-docs/?sXSMUs


33

Southeast Asia Development Research | Volume 01 | Issue 01 | May 2025

ment, which increase sharply during vegetative growth as 
the leaf area expands, and then gradually decline during 
maturation and senescence. By tracking these NDVI pat-
terns against known phenological curves, crop age can be 
estimated with reasonable accuracy, especially when cali-
brated with ground-truth growth stage data.

This paper aims to develop a tool for performing land 
cover classification of agricultural fields and to propose a 
diagnostic assessment of crop age and production using 
external data. The tool is designed to support Thailand’s 
space agency, Geo-Informatics and Space Technology 
Development Agency (GISTDA) in providing accurate ag-
ricultural information to the Thai Ministry of Agriculture. 
A case study demonstrates the tool’s effectiveness by clas-
sifying three crop types: rice, palm, and rubber. To achieve 
this, CNNs are employed for classification, with four 
distinct classes established: rice, palm, rubber, and a com-
plementary class. These classes are used to generate three 
datasets. The methodology for analyzing rice, rubber, and 
palm fields is detailed, and CNN models tailored to each 
dataset are proposed and validated. The land cover classi-
fication is first evaluated on a small test area, followed by 
a large-scale assessment and diagnostic analysis of a 100 
km² region using NDVI data.

2. Methods

2.1. Land Cover

The method for generating the land cover by combin-
ing the results from different CNNs is briefly outlined, and 
readers are referred to the following publication for further 
details [32]. Each CNN model is used to predict a specific 
class, and then, post-processing is performed on each clas-
sification to remove classified spots that are too small to 
actually represent the feature they are intended to repre-
sent. Finally, the land cover is performed by assembling 
the different class prediction results.

2.2. Crops Diagnostic

The CNN-based classification provides detailed crop 
information, including crop type (class), area (size), and 
spatial distribution (location). By integrating this data with 

external sources, it becomes possible to derive/extract 
comprehensive agricultural insights. To facilitate this pro-
cess, an eight-step methodology is proposed (Figure 1).

a) A remote-sensing image is used as input to the 
method (Figure 1a). For each investigated class, the CNN 
models classify the input images. Since the clustering ap-
proach based on the K-means method demonstrated its 
effectiveness in grouping predictions [25, 32], it is used to 
identify class-specific spots and determine their size and 
position (Figure 1b).

c) Index map is obtained from the index calculation, 
such as NDVI, Soil Adjusted Vegetation Index (SAVI), or 
Modified Green Red Vegetation Index (MGRVI), that are 
related to the remote sensing image bands as Red, Green, 
Blue Near Infrared bands also called RBG-NIR (Figure 
1c). These indices are used to calculate a large number of 
vegetation parameters, including canopy health, biomass, 
and photosynthetic activity.

d) The index values, derived from the index map 
(Figure 1c), are assigned to each sampling point within 
their respective vegetation class (Figure 1d). This associa-
tion enables the analysis of spatial variability in vegetation 
health and productivity across different classified zones.

e) The distribution of index values across all sam-
pling points is analyzed (Figure 1e), providing statistical 
insights into vegetation variability within and between 
classes.

f) The class state (e.g., maturity stage or age) is cor-
related with a defined range of index values, as supported 
by external data from literature or field measurements 
(Figure 1f). This establishes a reference framework for in-
terpreting vegetation conditions.

g) Using the class state information (Figure 1f) and 
the index distribution of each sampling point (Figure 1d), 
sub-classification based on developmental stages (e.g., 
young, mature, senescent) is performed. All relevant data 
per spot—including index values, class, and sub-class—
are then systematically compiled (Figure 1g).

h) To enhance accessibility and utility for decision-
makers, the aggregated data is organized into a structured 
format (e.g., geodatabase, tabulated reports, or interactive 
maps) tailored to stakeholder needs (Figure 1h).
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Figure 1. Methodology to perform diagnostics for each crop type.
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3. Study Case

3.1. Interest

Thailand encompasses a total area of 513,000 km², 
with agricultural land covering 221,000 km² (43% of the 
national territory) as of 2015. The agricultural sector plays 
a vital role in Thailand’s economy, contributing 8.7% to 
the Gross Domestic Product (GDP) and employing one-
third of the nation’s workforce in 2019. Thailand ranks 
among the world’s leading producers of rice, rubber, and 
oil palm. Notably, it is the second-largest rice exporter 
globally, trailing only China, India, Indonesia, Bangladesh, 
and Vietnam in total production [33]. Moreover, Thailand 
accounts for 4% of the global palm oil production [34]. As of 
2021, Thailand remains the global leader in natural rubber 
production, yielding 4.6 million metric tons annually. This 
accounts for approximately 35% of global rubber produc-
tion, maintaining the country’s dominant position in this 
agricultural sector since 1991 [35].

3.2. Dataset

To classify the three target agricultural types in Thai-
land (rice, palm, and rubber), we established four distinct 
classes:

● Rice class
● Palm class

● Rubber class
● Complementary class: Includes roads, buildings, 

non-target crops, and forests
The first three classes correspond to their respective 

crop types, while the complementary class encompasses 
all other land cover features (Figure 2). The dataset was 
derived from Pleiades satellite imagery (RGB bands, 0.5 
m/pixel resolution) acquired on November 2, 2022. The 
study area comprises two 100 km² sites in Chachoengsao, 
Thailand, centered at: 13°39’9.171”N, 101°36’21.846”E; 
13°20’20”N, 101°38’24”E. Each image tile measures 100 
× 100 pixels (0.025 km² per tile). To ensure classification 
accuracy exceeding 90%, we followed established best 
practices [32, 36–39], requiring hundreds of thousands of high-
quality tiles per class. Accordingly, our dataset includes 
100,000 tiles per class for robust model training.

The three investigated classes (rice, palm and rub-
ber) are identified by a specific CNN model, and therefore, 
three datasets must be organized using the same initial 
tiles. Each dataset is built around two subclasses (Table 1): 
the first class is the investigated one, and the second is re-
ferred to as ‘others’. This second subclass is a combination 
of approximately 33,300 tiles from the three other non-
investigated classes. As recommended in the literature, the 
dataset has been randomly divided into three sets: 70% of 
the total tiles as a training set, 15% as a validation set, and 
15% as a testing set [40].

1

Rice

Palm

Complementary

Rubber

Classes Chachoengsao
province

Area of interest

Figure 2. Typical class tiles are used to perform the classification and geographic location of the study area.
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3.3. Land Cover

In the investigated study case, using the specified res-
olution, the parameters of the land cover post-processing 
have been empirically determined based on the experience 
of the GISTDA(Table 2). 

Table 2. Post-processing of land cover.

Threshold \ Class Model Rice Palm Rubber

Small size threshold main class cluster (m²) 600 2500 2500

3.4. Vegetation Indices

NDVI is an index commonly used in remote sensing 
and satellite imagery analysis to assess and quantify the 
amount of live green vegetation in a given area [41]. NDVI 
analysis is further used as ancillary data to support clas-
sification, resulting in differentiating between different 
types of vegetation, namely rice, forest, oil palm, matured 
rubber, and immature rubber classes, specifically [42]. The 
NDVI value was calculated using Equation (1).

 NIR REDNDVI = 
NIR + RED

-  (1)

Where Red and NIR are the Band 3 (620-700 nm) and the 
Band 4 (775-915 nm) respectively in Pleiade (“Pleiades -  
Earth Online,” n.d.). Thanks to the land cover obtained 
using the aggregation of CNN models’ results (Figure 
1b) and the NDVI map (Figure 1c), index analysis can be 
performed (Figures 1d and 1e). Based on external data, 
i.e. literature, NDVI values enable the determination of the 
age of rice, palm and rubber fields (Figure 1f). Then, in-
formation related to each field is collated (Figure 1g) and 
gathered (Figure 1h). Subsequently, a map displaying the 
age of fields is generated. 

3.5. Rice Field

Using the NDVI, the age of rice can be determined [29], 
which is then utilized to estimate rice productivity [43]. The 
NDVI value utilized corresponds to the optimal vegeta-
tive phase of rice, occurring between 8 and 13 weeks after 
planting [44]. Table 3 presents the NDVI classification table 
used to identify the age of rice. As given by the Equation 
2, a typical rice field produces an average of 2300 kg/ha in 
Thailand [45].

 Average production(kg) = 2300(kg/ha) x area(ha) (2)

Table 3. Range of NDVI values for the ages of rice [29].

States Age (weeks) NDVI

Flooding <3 <0.17

Tilering 3-<4 0.17-0.31

Stem Elongation 4-6 0.31-0.45

Panicle Initiation 6-8 0.45-0.52

Flowering 8-13 0.52-0.88

Fully-Mature 13-16 0.45-0.52

Harvesting >16 0.31-0.45

3.6. Palm Field

Palms go through different stages of development: 
seed, young, teen and mature, and for each of them, palm 
oil production can be estimated [46]. Palm production is 
based on a 6-month period, which is the maturation time. 
As for the rice, the age of the palm trees can be obtained 
thanks to the NDVI [29]. The relation between age and 
NDVI is given by the following regression Equation (3).

 NDVI = 0.0104x + 0.5953 (3)

Where x is the palm tree age.

Table 1. Dataset.

Dataset

sub-class 1:
investigated class

sub-class 2:
others

CNN model Rice
Rice class
= 100,000 tiles

Rubber + Palm + complementary classes
= 100,000 tiles

CNN model Rubber
Rubber class
= 100,000 tiles

Rice+ Palm + complementary classes
= 100,000 tiles

CNN model Palm oil
Palm oil class
= 100,000 tiles

Rice + Rubber + complementary classes
= 100,000 tiles

https://www.zotero.org/google-docs/?fucs2f
https://www.zotero.org/google-docs/?fucs2f
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Table 4. Production for each palm class and per age [46].

States Seed Young Teen Mature

Age (years) 0-3 3-8 9-14 15-25

NDVI 0.595-0.626 0.626-0.678 0.689-0.740 0.751-0.855

Average 
production
(kg/6 months/
tree)

0 68.77 109.08 73.91

The canopy area of individual palm trees can be ob-
tained from their age [47] and it is obtained using Equation 
(4), which is derived from field-measured crowns.

 Canopy area = A 0.59
0.15

ge-  (4)

Finally, the total production can be calculated using 
the following Equation (5).

 Total production = 
4

i 1=∑ ,  
(Prodi x Number of palm_treei)

 (5)

Where ‘Prodi’ is the production of palm trees depending 
on their age (Table 4). ‘Number of palm_treei’ is the es-
timated number of palm trees per age that is given by the 
total area divided by the canopy area of an individual palm 
tree [Equation (4)].

3.7. Para-Rubber Field

The development stages of a para-rubber plantation 
can vary slightly depending on specific management prac-
tices and regional factors such as climate, soil quality, agri-
cultural practices, disease control, and the use of improved 
rubber tree varieties. However, here are the typical four 
development stages of a para-rubber plantation [48]:

● Sweeden Stage: in which land is cleared for culti-
vation (normally by fire) and then left to regener-
ate after a few years.

● Young open-canopy stage: in which the crop con-
sists mainly of young trees that are not mature 
enough to produce latex.

● Productive closed-canopy stage: in which trees are 
mature enough to produce latex

● Fully matured closed-canopy stage
The maturity stages of para-rubber trees can be deter-

mined using the NDVI index as for the two previous types 
of crops (Table 5). Based on the experimental observation 

of Chen et al. [31], relation linking the age of para-rubber 
trees to the value of the NDVI index can be expressed by 
Equation (6).

 NDVI = 0.1534 * In (x) + 0.31 (6)

Where x is the para-rubber tree age. Unfortunately, due to 
a lack of data, the production of para-rubber could not be 
estimated.

Table 5. Para-rubber per age [31].

States Swidden Young Productive Fully-Mature

Age (years) 0-3 4-7 7-25 >25

NDVI 0-0.479 0.524-0.610 0.610-0.805 >0.805

3.8. CNN Model 

CNNs have demonstrated superior efficiency com-
pared to traditional machine learning methods in similar 
tasks [14, 16], justifying their selection for this case study. 
Three distinct CNN models were developed, one per class 
(Table 1). The use of independent CNN models demon-
strated flexibility by allowing for the easier addition of 
new classes compared to a single CNN model that pre-
dicts all classes simultaneously. Moreover, this approach 
reduces computational requirements and costs [25, 32, 36–39]. 
Each model consists of ‘N’ convolutional layers (Conv_
layer N) followed by two dense layers and a dropout layer 
for regularization (Figure 3). All layers employ the ReLU 
(Rectified Linear Unit) activation function to introduce 
non-linearity while mitigating vanishing gradient issues. A 
pooling rate of 0.4 was used, and a learning rate of 0.0001 
was applied to enhance accuracy and reduce validation 
loss. The input image size was 100 × 100 × 3 (Figure 2), 
and a 3 × 3 kernel size was used. To further improve model 
generalization, classic data augmentation techniques were 
applied. These included random horizontal and vertical 
flipping, rotation (up to 20°), zooming (up to 10%), and 
brightness adjustments (within a 0.1–0.2 range). Such aug-
mentations help simulate variations in real-world condi-
tions while preventing overfitting. For each model, several 
configurations were tested, and the best one was retained 
at the end, resulting in a batch size of 1500 for rice, 512 
for palm and 1024 for rubber (Table 6). A callback of 30 
epochs has been used to avoid overfitting.
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4. Results

4.1. CNN Model Validation

The confusion matrix provides a comprehensive 
breakdown of the CNN model’s performance, highlighting 
variations in class-specific accuracy[49] (Figure 4). For the 
Rice class, the model achieved a recall of 92%, correctly 
identifying 92 out of 100 instances, while misclassifying 
8 as Others. The Others category for Rice demonstrated a 

recall of 91%, with 9 misclassifications. Precision for Rice 
stood at 92%, and for Others, it was 90%. Similarly, the 
Palm class exhibited the highest accuracy at 97%, with only 
3 misclassifications, while the “Others” category for Palm 
achieved a recall of 95%. The precision for Palm was 92%, 
and for Others, it reached 95%. These metrics underscore 
the model’s robust performance, particularly for the Palm 
class, while also revealing areas for potential improvement 
in the classification of Rice and Other categories.

12

Figure 3. Flow chart of the Convolutional Neural Network architecture.

Table 6. Description of layers and batch size for each CNN model.

Layers \ CNN Model Rice CNN Palm CNN Rubber CNN

Number of Convolutional layers 3 4 3

Number of neurons per Convolutional layer 8 5 16

Number of neurons per Dense layer 8 5 16

Batch size 1500 512 1024
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Figure 4. Confusion matrix of the 3 CNN models.

4.2. Land Cover

A representative 500 m² agricultural area in Thailand 
(Figure 5a) was classified using the proposed methodol-
ogy (Figure 5b). The investigated area features a diverse 
landscape, including rice paddies, oil palm plantations, 
rubber tree plantations, and other agricultural land cover 
types, such as bare soil, forests, and water tanks. The palm 
class demonstrated strong predictive performance, except 
for newly replanted fields, which were not detected, result-
ing in false negatives. For the rubber class, the model suc-
cessfully identified all rubber tree plantations. However, 
some false positives occurred in eucalyptus plantations due 
to their similar visual patterns and coloration to young rub-
ber trees. Regarding the rice class model, while it detected 
all rice paddies, it also misclassified some bareland areas 
as rice fields due to their similar spectral characteristics in 
the imagery.

Figure 5. Investigated satellite image of 500 m² area and the 
associated CNN models prediction.

4.3. Diagnostic

The NDVI is computed from the reflectance values 
in the Red and NIR spectral bands [Equation (1)], gener-
ating an index map that highlights vegetation distribution 
(Figure 1d). A statistical analysis of index values across 
all sampling points (Figure 1e) reveals the spatial variabil-
ity in vegetation vigor, enabling quantitative comparisons 
between different land cover classes. The NDVI distribu-
tions for each classified field were systematically analyzed 
(Figure 6). All fields in this study were assigned unique 
CP identification codes. Palm plantations exhibited con-
sistent spectral characteristics, showing an average NDVI 
value of 0.7 with a standard deviation of 0.06. Integration 
with external validation data (Table 4) confirmed these 
values correspond to palm fields aged 3-4 years. Four 
distinct rice fields were identified through their character-
istic NDVI signatures (Figure 6). The first field exhibited 
a pronounced bimodal distribution, characterised by a 
relatively low mean NDVI of 0.27 and high variability 
(SD = 0.15). The second field showed more concentrated 
reflectance values, averaging 0.46 with a tighter distribu-
tion (SD = 0.06). Field three presented a skewed distribu-
tion pattern (mean = 0.43, SD = 0.17), while field four 
exhibited a bimodal, skewed distribution (mean = 0.52, 
SD = 0.10). When cross-referenced with the agricultural 
database (Table 3), these patterns enabled age estimation, 
though the growth stages of fields two and three remained 
indeterminate due to overlapping spectral characteristics. 
The three rubber fields demonstrated homogeneous NDVI 
distributions, with mean values of 0.54, 0.64, and 0.67, re-
spectively, and standard deviations below 0.1 in all cases. 
This spectral consistency facilitated reliable age determi-
nation, using Table 3 and Equations (3) and (6), mirroring 
the diagnostic capability shown for palm and rice fields. 
All analytical results were compiled into a comprehensive 
summary (Table 7) for administrative use, presenting the 
complete inventory of classified fields with their respective 
growth stages, surface area measurements, and age deter-
minations. This aggregated dataset provides authorities 
with quantitative metrics for agricultural monitoring and 
decision-making.
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15

Figure 6. NDVI distribution of the different classified clusters.
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5.  Discussion

5.1.  Application

The method demonstrates its ability to provide in-
formation and can be applied over a large area of 100 km2 
(Figure 7). The total surface of palm, rice and rubber clas-
sified is 4.48 km2, 6.22 km2 and 9.35 km2, respectively. The 
gathered data detailing each state is given in Figure 8, and 
the calculated production of rice and palm is 91,448 kg per 
cycle and 5,334 tons/6 months of rice and palm, respec-
tively.

Figure 7. Investigated satellite image of a 100 km2 area.

18

Figure 8. Total surface for each crop and different states for the 
100 km2 region.

5.2. Comparison with Reference Measures

Results obtained from the large area (Table 8) can 
be compared with those obtained using the accurate hand 
measurements performed by GISTDA, which are used as 
reference (Table 8). Error is defined as:

Table 7. Assembled data of the 500 m² region.

Crop-ID Class NDVI Mean Standard Deviation NDVI Sub-Class (State) Surface [ha] Average Production 

Palm-CP1 Palm 0.702 0.064 9- 14 years old 2.16 37,632 kg / 6 months

Rice-CP1 Rice 0.274 0.156 3-4 weeks 0.11 253 kg per cycle

Rice-CP2 Rice 0.463 0.060
6-8 weeks or
13-16 weeks

0.11 253 kg per cycle

Rice-CP3 Rice 0.439 0.174
4-6 weeks or
more than 16 weeks

0.03 69 kg per cycle

Rice-CP4 Rice 0.527 0.106 8-13 weeks 5.92 13,616 kg per cycle

Rubber-CP1 Rubber 0.645 0.104 4 years old 2.55 /

Rubber-CP2 Rubber 0.545 0.073 3 years old 1.46 /

Rubber-CP3 Rubber 0.676 0.073 5 years old 1.11 /
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 Error = −
  × 100 (7)

It can be observed that the error between the refer-
ence measurements and CNN predictions is -12% for 
the palm and about -20% for the other two classes. For 
each class, the CNN model underpredicts the reference 
measurements. Palm shows the lowest difference due to 
the highest accuracy of the CNN model (Figure 4). The 
other two classes present higher differences due to the dif-
ficulty in classifying the edge of the crops (Figure 9), as 
explained by Lu et al. [50].

A deeper analysis reveals that several factors contrib-
ute to these misclassifications. One of the primary causes 
stems from issues with edge detection. Crop boundaries 
often present mixed spectral signals, especially when ad-
jacent fields are composed of different vegetation types 
or when transitional zones (e.g., between rice paddies and 
bare land) are encountered. As a result, the CNN models 
sometimes confuse adjacent classes, leading to a degrada-
tion of boundary precision. Additionally, spectral similari-
ties between certain classes further complicate the clas-
sification task. For example, young rubber plantations can 
present visual and spectral features similar to eucalyptus 
plantations, both exhibiting comparable canopy textures 
and color tones in the satellite images. Similarly, bare lands 
with low vegetation cover can be misclassified as early-
stage rice fields, given their low NDVI values and similar 
reflectance patterns in the RGB bands used. These factors 
collectively contribute to the observed errors, particularly 
for rice and rubber classes, which showed higher discrep-

ancies compared to palm classification.

Table 8. Comparison between the reference area and the CNN 
prediction.

Rice Rubber Palm

Reference surface [km²] 8.05 11.92 5.09

CNN surface prediction [km²] 6.22 9.35 4.48

Error [Equation (7)] -22% -21% -12%

5.3. Benefits

The developed tool offers valuable opportunities 
to inform policy decisions at both local and national lev-
els. By providing accurate land cover classifications and 
detailed diagnostics on crop types, age, and estimated 
production, authorities such as the Ministry of Agriculture 
can better allocate subsidies to farmers based on actual 
crop types and conditions, promoting fairness and trans-
parency. Additionally, insights into the spatial distribution 
and maturity of agricultural lands can support strategic 
land use planning, including zoning for crop rotation, the 
identification of ageing plantations requiring renewal, and 
prioritization of agricultural investments. Moreover, early 
identification of underperforming fields through NDVI-
based diagnostics can help guide targeted interventions 
and resource allocation, thereby enhancing overall agri-
cultural productivity. Therefore, integrating the proposed 
CNN-based land cover tool into existing agricultural man-
agement frameworks could significantly strengthen data-
driven decision-making for sustainable agricultural devel-
opment in Thailand.

1

Palm classification Rice classification Rubber classification

Figure 9. Edge classification of palm, rice and rubber of the 500m2 area.
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5.4. Limitations

CNN models have been trained using images of the 
two different studied areas (Figure 2). Although interest-
ing results have been obtained in terms of classification, 
the applicability of the CNN models could be restricted 
to these specific areas, and their accuracy in other regions 
remains uncertain. Hence, it is possible that the suggested 
CNN models might not be efficient in generating accurate 
labels for other regions. To enhance generalizability, it is 
recommended that more diverse datasets be incorporated, 
including images from different geographical regions, crop 
types, and temporal variations. Additionally, transfer learn-
ing approaches could be employed, allowing pre-trained 
models to be fine-tuned with a smaller amount of new data 
from different regions, thereby improving adaptability 
while reducing the annotation burden [51]. A larger dataset 
should be used to represent the diversity of the three better 
investigated crops presented in Thailand across different 
periods. However, creating such a large dataset will require 
the annotation of a large number of tiles to achieve high 
accuracy, which is a challenging task. To improve the pre-
diction of crop edges, post-processing techniques can be 
applied as proposed by Dong et al. [52]. A Fully Connected 
Conditional Random Field (FC-CRF) has been employed 
to refine the segmentation results, yielding an improve-
ment in overall accuracy of 1.48% a 1.4% increase in the  
mean Intersection-over-Union (IoU).

6. Conclusion

Precision agriculture serves as a valuable tool for 
enhancing production management. This study success-
fully classified and diagnosed three key crop types in Thai-
land—rice, rubber, and palm—using dedicated CNN mod-
els. Each CNN model was trained on a dataset comprising 
200,000 tiles (100 × 100 pixels at 0.5 m/pixel resolution), 
achieving classification accuracies exceeding 92%. Fol-
lowing model predictions, post-processing techniques were 
applied to generate comprehensive land cover maps. Sub-
sequent diagnostic analysis utilizing NDVI indices enabled 
crop age determination and production estimation.

Validation across a 100 km² study area revealed 
prediction differences of 12%, 21%, and 22% for palm, 
rubber, and rice, respectively, when compared to ground 

reference measurements. These results demonstrate the 
effectiveness of the method in crop classification, status 
identification, and production estimation. Current efforts 
focus on enhancing existing class datasets, particularly 
for crop edge detection, while expanding the framework 
to incorporate additional crops, such as cassava and euca-
lyptus. Future work will explore supplementary vegetation 
indices, including the SAVI, to further improve diagnostic 
capabilities.
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