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Abstract Nonlinear system identification concerns the

determination of the model structure and its parame-

ters. Although the designers often seek the best model

for each system, it can be tricky to determine, at the

same time, the best structure and the parameters which

optimize the model performance. This paper proposes

the use of a Genetic Algorithm, GA, and the Levenberg-

Marquardt, LM, method to obtain the model param-

eters, as well as perform the order reduction of the

model. In order to validate the proposed methodol-

ogy, the identification of a magnetic levitator, operating

in closed loop, was performed. The class NARX-OBF,

Nonlinear Auto Regressive with eXogenous input-Ortho-

normal Basis Function, was used. The use of OBF func-

tions aims to reduce the number of terms in NARX

models. Once the model is found, the order reduction
is performed using GA and LM, in an hybrid appli-

cation, capable of determining the model parameters

and reducing the original model order, simultaneously.

The results show, considering the inherent trade-off be-

tween accuracy and computational effort, the proposed

methodology provided an implementation with good

mean square error, when compared with the full NARX-

OBF model.
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1 Introduction

A system can be defined as a structure in which differ-

ent variables interact and produce observable signals. In

the same way, a model expresses the relation between

observable quantities. Therefore, allowing the predic-

tion of properties and behavior of an object [1].

In control engineering, modeling systems is a con-

stant need. The model can provide a better understand-

ing of the system operation, it can also be a powerful

prediction tool which may prevent faults in the real

system [2].

System Identification can be regarded as the field

responsible for relating a purely mathematical model

to a system. That is, in the development of the model,

only data concerning the system input and output are

needed [3]. That approach is known as black box mod-

eling and it is very appealing, since no simplifying as-

sumptions are requested when building the model [4].

There are several classes of models that can be used

in the development of a black box model. The designer

must consider representation capability and computa-

tional effort when choosing a class. That is not an easy

choice and is often empirically made. As examples of

classes of nonlinear models frequently mentioned in lit-

erature, one can cite Volterra Series [5] and NARX [6],

Nonlinear Auto Regressive with eXogenous input. These

classes may present a dimensionality problem, since the

number of terms to be determined in the model is often

high [3].

The dimensionality problem is less critical in NARX

models, since past outputs are considered in the model,
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which reduces the number of terms required by the

model. Additionally, it is possible to reduce the com-

putational cost of NARX models even more, selecting

the most relevant series’ terms [7] (in other words, per-

forming the order reduction of the model).

Order reduction techniques are specially interesting

for the representation of highly nonlinear systems, since

the number of terms in a polynomial model increases

with the nonlinearity degree of the system [3]. NARX

models are known for the high representation capabil-

ity. In order to avoid the lost of this characteristic, the

order reduction must be carefully parametrized [8].

It is worth mentioning that the use of OBF, Or-

thonormal Basis Functions, is widely known in liter-

ature. ARX-OBF [9], which are Infinite Impulse Re-

sponse, IIR, models and Volterra-OBF [8,10,11], which

are Finite Impulse Response, FIR, models have already

been proposed. NARX-OBF models [11], which can be

seen as a feedback version of the Volterra-OBF models,

have also been treated in previous work.

It can be considered that a NARX-OBF model is a

more compact implementation of the classical NARX

models. That is, the use of OBF reduces the number

of terms necessary to the model. In order to improve

the performance of the NARX-OBF models, this paper

proposes an order reduction methodology for this class

of models.

A Genetic Algorithm, GA, is used to select the most

representative terms of the full NARX-OBF model. Thus,

simplifying the model realization and reducing the sim-

ulation time. The evaluation function applied in the GA

is inspired by the Akaike Information Criterion [12],

AIC. This criterion quantifies the impact in the Mean

Square Error (MSE) caused by the insertion of a new

term in the model. At the same time, the AIC penal-

izes the insertion of this new term, since it increases the

model complexity.

With a fitness function which considers the AIC, the

GA proposed in this work is capable of realize the joint

minimization of the MSE and of the number of terms in

the model. That is, the GA performs a multi-objective

optimization, aiming the simplest model with the best

representation.

It is important to mention that the use of GA in

the order reduction of NARX polynomial models has

already been investigated [13]. However, in this paper

it is proposed the use of GA as a mechanism of search

for the poles of the Kautz functions, in NARX-OBF

models, and also to reduce the number of terms in the

series that implement such a model. Furthermore, in the

proposed methodology, the GA acts by interleaving its

actions with the Levenberg-Marquardt method, which

is the latter responsible for determining the coefficients

of the NARX-OBF model.

The main contributions of this work can be defined

as:

– the joint minimization of: (i) the MSE and; (ii) the

complexity of the NARX-OBF models, (i.e., the joint

search for the model structure and its parameters);

– the interleaving application of the GA method (search-

ing for Kautz poles and the model structure), and

the Levenberg Marquardt method (which search for

models’ coefficients).

This paper is divided as follows: section 2 presents

the structure of NARX-OBF models, section 3 gives

a summarized description of the methods for parame-

ter selection, section 4 presents the identification of the

magnetic levitation system, section 5 presents the main

results obtained and, finally, section 6 is dedicated to

conclusions and future work.

2 NARX-OBF Models

This section is dedicated to present basic concepts re-

garding orthonormal functions and NARX-OBF mod-

els [11].

2.1 Orthonormal Basis Functions

The main property of orthonormal functions is expressed

by Eq. (1).

〈ψm(k), ψn(k)〉 =

{
0 m 6= n,

1 m = n,
(1)

in which k, m, n ∈ Z, and ψm(k) and ψn(k) are or-

thonormal functions and 〈.〉 is an inner product, defined

by Eq. (2).

〈ψm(k), ψn(k)〉 =

∞∑
k=−∞

ψm(k)ψ∗n(k), (2)

in which ψ∗n(k) represents the complex conjugate of

ψn(k). To be classified as orthonormal, a function must

satisfy the following requirements:

– 〈ψm, ψn〉 = 0, for m 6= n;

– |ψn| = 1, ∀ n;

in which |ψn| =
√
〈ψn, ψn〉.

As examples of orthonormal functions, one might

mention Hermite, Jacobi, Laguerre, Legendre, Kautz

and the Generalized Orthonormal Basis Functions, GOBF.

In this work, Kautz functions are employed. Therefore,

next subsections present a summarized description of

these functions.
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2.2 Kautz Functions

Kautz functions are orthonormal functions parametrized

by complex poles [8,9]. Equations (3) and (4) present

the general form of Kautz functions:

K2m(z) =

√
(1−τ2)(1−σ2)

z2+σ(τ−1)z−τ

[
−τz2+σ(τ−1)z+1
z2+σ(τ−1)z−τ

]m−1
, (3)

K2m−1(z) = z(z−σ)
√
1−τ2

z2+σ(τ−1)z−τ

[
−τz2+σ(τ−1)z+1
z2+σ(τ−1)z−τ

]m−1
, (4)

in which m ∈ N, z stands for the complex variable asso-

ciated with the Z transform, K2m(z) and K2m−1(z) are

the even and odd Kautz functions, respectively. Consid-

ering that β and β are the complex conjugate poles that

parametrize these functions, τ and σ can be expressed

by:

σ = (β + β)/(1 + ββ), (5)

τ = −ββ. (6)

The use of orthonormal functions in nonlinear mod-

els aims to reduce the number of terms required by

the Volterra or NARX models [8,10]. In this context,

FIR models described by Kautz basis (as Volterra-OBF

models) can be implemented by concatenated filters, as

depicted in Fig. 1.

The idea behind of NARX-OBF models came from

the Volterra-OBF models. Thus, NARX-OBF can be

seen as a feedback version of Volterra-OBF model [11].

Eq. (7) is the mathematical expression of a NARX-OBF

model.

ŷ(k) = Mu(k) +My(k) +Muy(k), (7)

in which Mu(k), My(k) and Muy(k) stands for the in-

put, output and hybrid model components, respectively.

These components are expressed by equations (8), (9)

and (10).

Mu =

n∑
m=1

cumw
u
m +

n∑
p=1

n∑
q=p

cup,qw
u
pw

u
q , (8)

My =

m∑
m=1

cynw
y
m +

m∑
p=1

m∑
q=p

cyp,qw
y
pw

y
q , (9)

Muy =

m∑
p=1

n∑
q=1

cuyp,qw
u
qw

y
q , (10)

in which the terms wui are versions of the input, u(k), fil-

tered by a ith order Kautz function, being i = 1, 2, · · · , n.

The terms wyj are versions of the output, y(k), filtered

by a jth order Kautz function, being j = 1, 2, · · · ,m.

Further, cui (for i = 1, 2, · · · , n), cyj (for j = 1, 2, · · · ,m)

and cuykl (for k = 1, 2, · · · ,m, and l = 1, 2, · · · , n), are

the coefficients of input, output and hybrid terms (non-

linear combination between the filtered input and out-

put signals), respectively.

NARX-OBF models can also be expressed in the

concatenated filters form, Fig. 2 shows the idea. It is

worth mentioning that, in this work, the NARX-OBF

model is truncated in the 2nd order kernel.

Once the model is defined, it is necessary to deter-

mine its parameters, in order to capture the system’s

dynamic whose one desire to model. In this scenario,

next section is dedicated to detailing the parameter se-

lection in NARX-OBF models.

3 Parameter Selection in NARX-OBF Models

As stated in section 1, the goal of this work is to de-

termine the structure and parameters of a NARX-OBF

model for a nonlinear system. To that end, a methodol-

ogy which combines a Genetic Algorithm, GA, and the

Levenberg-Marquardt, LM, method is proposed.

The GA is used to find the model structure. It is

worth pointing out that the GA searches for the terms

that best represent the system dynamic. Thus, the al-

gorithm finds a simplified structure for the model, aim-

ing to reduce the computational effort. The GA is also

used in the search for the pole that parametrizes the or-

thonormal functions. Further, LM is the method used

to find the coefficients of the model.

An appealing advantage of heuristic methods con-

cerns stability. NARX-OBF models are feedback mod-

els and, therefore, might be unstable. Instability is a

problem for conventional parameter determination meth-

ods, which may not be able to solve the estimation

problem. Heuristic methods, however, are based on a

population of solutions. These solutions are categorized

regarding the fitness function. A solution resulting in an

unstable model is poorly evaluated. Hence, the natural

dynamic of the GA is able to neglect unstable models.

Next sections are dedicated to present the main

ideas concerning GAs and LM method.
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Fig. 1 OBF model with Kautz dynamics [8]. u(k) is the input and ŷ(k) is the estimated output of the system to be identified,
[11].

Fig. 2 NARX-OBF model in the form of concatenated filters. Operations expressed by equations (8), (9) and (10) are
represented by the H operator, [11].

3.1 Genetic Algorithms

In the last decades, optimization problems have mo-

tivated great improvements in mathematics and engi-

neering. Methods like Newton, steepest descendent and

Levenberg-Marquardt have made possible the solution

of a series of design optimization problems [14]. How-

ever, these methods require strong conditions to have

their convergence proved, such as availability of gradi-

ents and convexity [15]. In several industrial applica-

tions the designer has to deal with some peculiarities

such as nonlinearity, non-convexity, existence of several

local minima, presence of discrete and continuous de-

sign variables, among others [16].

Optimization methods that can potentially circum-

vent the problems mentioned above are the heuristic al-

gorithms. Some advantages of these algorithms include:

(i) these methods do not require gradient information

and can be applied to problems in which the gradient

is not defined; (ii) these algorithms are not “trapped”

in local minima, if correctly tuned; (iii) these methods

can be applied to discontinuous functions; (iv) these al-
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gorithms provide a set of sub-optimal solutions instead

of a single solution.

Among the most popular heuristic algorithms are

the Genetic Algorithms, GA [17], the Ant Colony Opti-

mization, ACO [18], and the Particle Swarm Optimiza-

tion, PSO [19], all inspired by biological principles.

Genetic Algorithm, GA, was developed by John Hol-

land in the 1960s. Inspired by Darwin’s evolutionary

ideas, Holland has created a method in order to solve

optimization problems that dispenses Jacobian or Hes-

sian matrices of the problem [17]. The GA extracts an

emergent behavior of convergence. Emerging behaviors

involve the application of simple rules, over and over

again, which generates complex behaviors [17].

In a GA, each individual is modeled as a set of con-

stants [c1, c2, ..., cn], called genes. These constants form

a vector, C, known as a chromosome.

C : c1 c2 c3 ... cn

such constants are real for the treated problem. GA

have a whole population, P, of chromosomes:

P = {C1,C2,C3, ...,Cm} , (11)

in which each chromosome is analyzed by an evaluation

function, known as a fitness function, Fit(C): Rn → R,

and the chromosomes with the best fitness will have

greater reproducing likelihood in the next GA genera-

tions.

Genetic Algorithm is a highly parallel mathematical

algorithm which transforms a population of mathemat-

ical objects, with well-defined evaluation function, Fit,
in a new population of mathematical objects, following

the Darwinian principles of reproduction of the most

adapted.

According to Algorithm 1, a classical GA creates a

random population of solutions, expressed by P. This

population consists of possible solutions, C, to the prob-

lem addressed.

The solutions are, then, evaluated by the function

Fit(C). After these step, the best individuals (chromo-

somes with the lowest image in the evaluation function,

Fit) are (more likely) selected to be progenitors of the

next generation.

The Crossover and Mutation operators are applied

to the population and the generated individuals are

evaluated. This cycle is repeated until the stop criterion

is reached, i.e,. the fitness value of the best chromosome

is smaller than a certain threshold: Fit < Stopcriterion.

It should be emphasized that GAs do not guarantee

convergence to the optimum of the problem, and may

end up confined to a local region [20]. A point xl is

Algorithm 1: Genetic Algorithm

Initializes the population of solutions, P;
Simulates the model generated by each chromosome;
Fitness is calculated for each chromosome, Fit(C);
while Fit > Stopcriterion do

The best individual is saved;
Selecting parents;
Apply Crossover Operator;
Apply Mutation Operator;
Simulate the model corresponding to each
chromosome;

Evaluate Fitness function for each chromosome;

a local minimum if there is a neighborhood V (of xl),

such that f(xl) ≤ f(x) for x ∈ V [14].

3.1.1 Crossover

The Crossover operator was inspired by the biochemical

process of Crossing-Over, in which parts of two chro-

mosomes are exchanged in the process of sexual repro-

duction [20].

Fig. 3 shows the Crossover operator action under

chromosomes f = [f1, f2, · · · , fn] and g = [g1, g2, · · · , gn].

This operator performs the local search in the search

space [17].

Fig. 3 Example of Crossover operator.

3.1.2 Mutation

The Mutation operator can perform an exploration by

inserting a random constant into a random gene posi-

tion, as expressed in Fig. 4.

Fig. 4 Example of Mutation operator.
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This operator has essentially the global search func-

tion, being complemented by the crossover operator,

that performs local searches, composing the mechanism

of a classical Genetic Algorithm.

3.2 Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm is a second-

order method, which shares with gradient-based meth-

ods the ability to converge rapidly from any starting

point, even if this point is outside the region of con-

vergence of other methods [21]. Further, Levenberg-

Marquardt is one of the most efficient and most used

optimization methods, especially in Systems Identifica-

tion area [4].

The Levenberg-Marquardt method can be derived

by substituting the exact line search strategy (see [15]),

for the Confidence Regression strategy (see [14]). The

use of the Confidence Regression strategy avoids the

main problem of the Gauss Newton method, which oc-

curs when the Jacobian, Jξ(x), stop being full rank,

or near to it [14]. Generally, the Hessian of a generic

function, f(x), can be approximated as:

∇2f(x) ≈ Jξ(x)TJξ(x), (12)

In order to simplify (12), ∇2f(x) can be expressed

by B(x), as (13).

B(x) = Jξ(x)TJξ(x) ≈ ∇2f(x). (13)

The idea of the LM method is to disturb the matrix

B(x), considering B(x) + ρI, for ρ > 0. This method

can be understood as the Gauss-Newton method with

the following modification:

{
xk+1 = xk +∆xk

∆xk = −[Jξ(x)TJξ(x) + λI]−1[Jξ(x)T ξ(x)],
(14)

in which λ ∈ R and I is the identity matrix.

It is reasonable to consider the use of hybrid algo-

rithms. Such algorithms behave as LM, for small residues,

and apply the Newton method, for larger residues [14].

As the Gauss-Newton methods, LM is based on an

expansion into Taylor’s series [21]. The search mecha-

nism used by the Levenberg-Marquardt method can be

observed in the algorithm 2.

Algorithm 2: Levenberg-Marquardt Algorithm.

Let be x0 ∈ Rn ;
Calculate d0, solution of:
[B(x0) + λI]∆x0 = −∇f(x0);

in which: B(x) = Jξ(x)T Jξ(x);
x1 = x0 +∆x0 ;
k=1;
while ∇f(xk) 6= 0 do

Calculate ∆xk, solution of:
[B(xk) + λI]∆xk = −∇f(xk);
Determine xk+1;
xk+1 = xk +∆xk ;
k=k+1

3.3 Proposed Methodology

NARX-OBF models, in their complete form, have a

high number of terms [9,8], therefore, reducing the or-

der of the model is interesting from a computational

perspective.

In order to reduce the model order, the GA fit-

ness function take two aspects under consideration: (i)

the number of terms, NC ; and (ii) the minimization of

the MSE. Eq. (15) expresses the fitness function used

in this work, which was inspired by the Akaike crite-

rion [12].

fit(MSE,NC) = N ×MSE + 0.1 NC × log(N), (15)

in which N is the number of samples in the input and

output signals of the system, MSE is the mean square

error, NC stands for the number of coefficients involved

in the model and the multiplier 0.1 is an empirical co-

efficient, used to balance the weight of terms.

The genes used in the GA are depicted in Fig. 5. The

real and imaginary parts of the Kautz function pole

and the presence of terms coefficients in the NARX-

OBF model are genes in the GA chromosome. Thus,

the evolutionary dynamics of the GA is responsible for

selecting the terms of the model which are representa-

tive for the system to be identified, performing an order

reduction of the NARX-OBF model.

Fig. 5 Structure of genes that compose a chromosome in the
proposed GA. β is the pole of the Kautz functions and the
genes of the vector [p1, p2, p3, · · · , pn] represent the presence
or absence of each term of the NARX-OBF model, in its
simplified version. If, e.g., p1 is 0 the first term of the NARX-
OBF model is disregarded. If p2 is 1, the second term of the
series is maintained.
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In the proposed methodology the idea is interleav-

ing an heuristic algorithm, GA, and a deterministic one,

LM algorithm. Mixing these two algorithms, one can

achieve the advantages of heuristic algorithms (do not

get stuck in local minima) and the advantages of deter-

ministic algorithms (the guaranty of finding the global

minimum in a concave region of the search space). In

this context, GA is responsible for finding: (i) the or-

thonormal functions pole; and (ii) the NARX-OBF model

structure, whereas the LM is responsible for finding the

model coefficients. The loop interaction between the

two algorithms is illustrated in Fig 6.

Fig. 6 Search mechanism of OBF-model parameters.

In order to testing this methodology, in the next

section, it will be presented the identification process

of a non-linear system.

4 Identification of a Magnetic Levitator

In order to validate the proposed method for reducing

the order of a NARX-OBF model, a magnetic levitation

system was chosen and identified. The system consists

of 2 permanent magnets and a mobile magnetic disk.

Four coils, operated two at a time, are able to control

the disk movement. In this paper, the model is obtained

concerning the x-axis. That is, the movements in the

axes y and z are neglected [22]. A schematic of the

system is depicted in Fig. 7.

The identification of a nonlinear system, such as the

one in Fig. 7, starts by the application of a Persistently

Exciting, PE, signal to its input. A signal is said to be

Fig. 7 Magnetic levitator schematic, adapted from [22].

persistently exciting if, considering the need to estimate

Np parameters, it has spectral power in Np bands of

frequency [4].

A widely used kind of PE signal is the Pseudo-

Random Multi Level Signal, PRMLS. The variable range

of the signal amplitude is desirable in the identification

of nonlinear systems, since it provide the excitation of

the system several dynamics [3].
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Fig. 8 Input data sampled in the magnetic levitator.

According to Earnshaw’s theorem [23], the system

in Fig. 7 is unstable. Thus, in order to circumvent the

instability problem, the system operates in closed loop

under the action of a Proportional Integral, PI, con-

troller.

Fig. 9 depicts the system output response to the in-

put signal (presented in Fig. 8). Both signals, input and

output, are composed by 100,000 samples. The sam-

pling period is of 1 ms. Moreover, in the validation of

the model, 20,000 samples were used.
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Fig. 9 Output data sampled in the magnetic levitator.

Table 1 Genetic Algorithm Parameters.

Parameter Value
Population 200 Chromosomes
Selection Method Tournement
Mutation Rate varies linearly (5 to 20 %)
Crossover Rate varies linearly (80 to 40 %)

Table 1 shows the specifications of the GA, which

performed the parameter search for the NARX-OBF

model. It is worth to emphasize that the metric applied

in the identification process aims the minimization of

the MSE as well as the reduction of the model com-

plexity, as expressed in Eq. (15).

Genetic algorithms have a stochastic component [17].

Thus, there is no guarantee that the MSE has reached

its global minimum. However, if the GA is well tuned,

it is possible to find reasonable parameters. Further,

in this work, the algorithm applies the GA to search

the model structure and the OBF pole, and applies

Levenberg-Marquardt method to find the model coef-

ficients, interweaving the methods. It is important to

mention that the GA loop keeps going on until the stop

criterion is reached, i.e., the MSE of the best solution

reach a value smaller than ε. The complete structure of

this hybrid GA can be seen in Fig. 10.

Next section is dedicated to present the main results

obtained in the identification of the magnetic levitator.

5 Results

After the closed-loop identification of the magnetic levi-

tator, the MSE obtained in each complete NARX-OBF

model, with different numbers of orthonormal functions,

is shown in Table 2. In this table, NF stands for the

number of orthonormal functions used, and NC corre-

Fig. 10 The proposed Genetic Algorithm structure ex-
pressed as a flowchart. ε is a higher limit for the MSE.

sponds to the number of coefficients for each NARX-

OBF model. The larger NC , the greater is the number

of terms in the model. Therefore, models with largerNC
are more time consuming, computationally speaking.

Table 2 MSE for Complete NARX-OBF Models.

NF NC Pole MSE
2 14 0.6479± 0.3812i 1.9416× 10−3

4 44 0.5521± 0.4012i 9.7212× 10−4

6 90 0.6017± 0.0686i 5.4947× 10−6

The MSE for the NARX-OBF models with order

reduction, and their fitness values, can be seen in Ta-

ble 3.

Table 3 MSE for simplified NARX-OBF models.

NF NC Pole MSE Fitness
2 8 0.3833± 0.7870i 1.8370× 10−3 40.1808
4 11 0.4770± 0.5850i 3.5540× 10−4 11.8331
6 54 0.5487± 0.0289i 3.5256× 10−4 30.2768

Figures 11, 12 and 13 illustrate the time responses of

the reduced order NARX-OBF models cited in Table 3.
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In order to make a visual comparison, Fig. 14 depicts

the performance of the complete NARX-OBF model,

mentioned in Table 2.

Comparing tables 2 and 3 one can see that removing

some terms of the complete NARX-OBF model does

not represent a significant MSE increasing. Further-

more, analysing the first row of tables 2 and 3, it is pos-

sible to see that removing 6 terms of the complete model

leads to a small reduction in the MSE. This result

shows that not all terms of the complete model are in

accordance with the system dynamic. Therefore, remov-

ing these terms has small impact in the MSE. Thus,

some results obtained by order reduction of NARX-

OBF models can approximate complete NARX-OBF

models without loss of generality.

Fig. 11 Identification results for the magnetic levitator, with
reduced order NARX-OBF, using 2 Kautz functions and 8
coefficients (terms).

Fig. 12 Identification results for the magnetic levitator, with
reduced order NARX-OBF, using 4 Kautz functions and 11
coefficients (terms).

Fig. 13 Identification results for the magnetic levitator, with
reduced order NARX-OBF, using 6 Kautz functions and 54
coefficients (terms).

Fig. 14 Identification results for the magnetic levitator, with
complete NARX-OBF, using 6 Kautz functions and 90 coef-
ficients (terms).

The time that each simplified model, expressed in

Table 3, took to be simulated is shown in Table 4. The

simulation time was computed for 10 simulations of

each model, the average of the simulation time is ex-

pressed in the final row of Table 4. In this table, K

indicates the number of Kautz functions and C, the

number of coefficients. Thus, the model 2K 8C stands

for the model with 2 Kautz functions and 8 coefficients,

which is in the first row of Table 3.

Next section presents the main conclusions of this

work.
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Table 4 Simulation time for simplified NARX-OBF models.

Time 2K 8C [s] 4K 11C [s] 6K 54C [s]
1 0.1124 0.2796 0.3806
2 0.1039 0.2535 0.3599
3 0.1057 0.2300 0.3521
4 0.1284 0.3708 0.4583
5 0.0905 0.2021 0.3107
6 0.0885 0.1995 0.3089
7 0.8889 0.2032 0.3075
8 0.0903 0.2008 0.3040
9 0.0892 0.1949 0.3074
10 0.0888 0.2027 0.3059

Average Time 0.0906 0.2032 0.3107

6 Conclusion

This paper proposes a method to obtain the order re-

duction of a NARX-OBF model. A Genetic Algorithm

combined with the Levenberg-Marquardt method is used

to find the model structure and parameters. The vali-

dation of the proposed methodology was based on the

closed-loop identification of a magnetic levitator.

The results shown in tables 2 and 3 allow the con-

clusion that the order reduction is not only possible,

but can reduce the model complexity, and has little im-

pact on the MSE value. Thus, one might say that some

of the terms which compose the complete NARX-OBF

model are irrelevant to modeling the system behavior.

Moreover, in Table 3 it is possible to observe that the

best fitness value is found in the intermediate situation,

between the minimum MSE and the minimum num-

ber of terms, NC . This case portrays the optimization

of both criteria at the same time.

It is important to mention that GA is a probabilistic

method and there is no guarantee in achieving the best

MSE in the identification process. However, in average,

it is possible to find reasonable parameters, as shown

in tables 2 and 3.

The next steps of this work include the use of Ge-

netic Programming to select the candidates to com-

pose the simplified NARX-OBF model and the use of

GOBFs (Generalized Orthonormal Basic Functions) in-

stead of only Kautz functions.
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