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In this paper, nonlinear vibration of electrostatically actuated microbeam is 
analyzed using differential transformation method. The high level of accu-
racy of the analytical solutions of the method was established through com-
parison of the results of the solutions of exact analytical method, variational 
approach, homotopy analysis method and energy balance methods. Also, 
with the aid of the present analytical solution, the time response, velocity 
variation and the phase plots of the system are presented graphically. It is 
hope that the method will be widely applied to more nonlinear problems of 
systems in various fields of study.
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1. Introduction

The applications of micro-electro-mechanical 
systems (MEMS) (batch-fabricated devices and 
structures at a microscale level [1]) in microswitch-

es, transistors, accelerometers, biomechanics, consumer 
electronics sensors in aerospace, optical and biomedical 
engineering [2-4] show its tremendous importance in many 
areas. In these microelectromechanical systems, electro-
static actuation is the most popular actuation mechanism 
used. Such actuation can be modeled by an electrostat-
ically driven microbeam and a pair of fixed electrodes. 
Understanding the mechanical behavior of microbeams [5-

8] and microplates [9-11] is of great importance due to their 
various applications [12-14]. However, dynamic response of 
the beam is greatly influenced by the inherent nonlinear-
ities in the system. These nonlinearities reveal that a col-

lapse of the movable structure occurs at a critical voltage 
(pull-in instability), and the phenomenon can be used as 
change of ON or OFF state [15-19]. In order to investigate 
this chaotic behaviour, nonlinear analysis of dynamic and 
stability responses of the system have been presented [20-25] 
using different analytical and numerical methods. Howev-
er, a combined advantage of simplicity and high accuracy 
were not able to be achieved through these methods. The 
high accuracy of the methods trade-off simplicity in ap-
proaches and principles. A further investigation revealed 
that the required combined advantage of simplicity and 
high accuracy of a solution method can be achieved us-
ing differential transformation method. Therefore, in this 
work, nonlinear vibration of electrostatically actuated 
microbeam is analyzed using differential transformation 
method. With the aid of the method, analytical solution is 
derived to analyze the behaviour of the system.
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2. Model for the Electrically Actuated Mi-
crobeam

Consider a fully clamped microbeam with uniform thick-
ness h, length l, width b(b≥5h) as shown in Figure 1. By 
applying the Galerkin Method and employing the classi-
cal beam theory and taking into account of the mid-plane 
stretching effect as well as the distributed electrostatic 
force, the dimensionless equation of motion for the mi-
crobeam is derived as

 u a u a u a a u a u a u a u( 1 2 3 4 5 6 7
4 2 3 5 7+ + + + + + =) 0 � (1)

the initial conditions are 

u A u(0) , (0) 0= = � (2)

where u is the dimensionless deflection of the microbe-
am, a dot denotes the derivative with respect to the dimen-

sionless time variable 
4

EIt
bhl

τ
ρ

=  with I and t being 

the second moment of area of the beam cross-section and 
time, respectively.

Figure 1. Schematics of a double-sided driven clamped-
clamped microbeam-based electromechanical resonator
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where effective modulus 21
EE
ν

=
−

, Young’s modulus E, 

Poisson’s ratio υ and density ρ .A is the initial angular dis-

placement or the amplitude of the oscillations. The prime 
(' ) indicates the partial differentiation with respect to the 
coordinate variable x . The parameter N denotes the tensile 
or compressive axial load, g0 is initial gap between the mi-
crobeam and the electrode, V the electrostatic load and ε0 

vacuum permittivity. The trial function is ( )
( )
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3. Differential Transformation Method to the 
Nonlinear Problem

The application of differential transform method to the 
nonlinear problem is demonstrated in this section.

The DTM recursive relations for the governing equa-
tion of motion (Eq. (1)) of the system is 
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Alternatively, we can write the recursive equation for 
governing equation as
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subject to

 [ ] [ ]0 , 1 0,U A U= = � (6)

From the recursive relation, the term by term solutions 
were obtained. For example,

[ ] ( )
( )
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+ + +
= −

+ +
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The other term by term analytical expressions for the 
solutions are too long and huge to be included in this pa-
per. Using the definition of DTM, the desired analytical 
solution was established. 

4. Results and Discussion

The accuracy of the differential transformation method 
is shown in Table 1. The Table depicted the high level 
of accuracy and agreements of the symbolic solutions of 
the DTM when compared to the exact analytical method, 
homotopy analysis method (HAM), variational approach 
(VA), and energy balance method (EBM).  From the re-
sults in the Table, it could be stated that the differential 
transformation method gives highly accurate results as 
homotopy analysis method and agrees very well with the 
exact analytical solution.  The DTM is comparably very 
simple and avoids any numerical complexity. Also, the 
higher accuracy of the differential transformation method 
over variational approach and energy balance method is 
shown.  It is shown that the results obtained by EBM and 
VA are not reliable. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

u

t

Figure 2. Time response of the system when 0.3A =
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Figure 3. Velocity variation with time when 0.3A =
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Figure 4. Phase plots of the system

Figure 2 shows the time response of the system while 
Fig, 3 displays the velocity variation of the system with 
time. It could be seen that for the relatively large initial 
displacement value, it can be seen that the time-displace-
ment graphs have a consistent harmonic pattern. 

Figure 4 shows the phase plots of the system. The cir-
cular curve around (0,0) in figure shows that the system 
goes into a stable limit cycle. The plot agrees very well 
with the past works. It is therefore established that, DTM 
provides a good analytical solution to non-linear equation 
of motion of the system. 

5. Conclusion

In this work, the effectiveness and convenience of differ-
ential transformation method to the nonlinear vibration of 
electrostatically actuated microbeam has been displayed. 
The analytical solution was verified through comparison 
with the solutions with the exact analytical method, vari-
ational approach, homotopy analysis method and energy 

Table 1. Comparison of results of frequency corresponding to various parameters of the system

A N a V Exact [24] HAM [24] VA [25] EBM [21] DTM

0.30 10 24 0 26.8372 26.8372  26.3644 26.3867  26.8372
0.30 10 24 10 16.6486 16.6486 16.3556 16.3829 16.6486
0.30 10 24 10 28.5382 28.5368 26.1671 26.5324 28.5382
0.30 10 24 20 18.5902 18.5902 17.0940 17.5017 18.5902
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balance methods. The differential transformation method 
was shown to be very efficient, simple, suitable and useful 
as a mathematical tool for solving the nonlinear problems. 
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