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Microprocessors such as those found in PCs and smartphones are complex 
in their design and nature. In recent years, an increasing number of security 
vulnerabilities have been found within these microprocessors that can leak 
sensitive user data and information. This report will investigate microarchi-
tecture vulnerabilities focusing on the Spectre and Meltdown exploits and 
will look at what they do, how they do it and, the real-world impact these 
vulnerabilities can cause. Additionally, there will be an introduction to the 
basic concepts of how several PC components operate to support this.
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1. Introduction

A CPU is often referred to as the “brain” of a computer 
system. It carries out instructions that are as dictated by 
the CPUs’ instruction set architecture. These instructions 
are executed when a computer program performs arithme-
tic or logic, and when controlling input and output opera-
tions. These instructions are executed during a clock cycle 
which is a single electronic pulse within a CPU [1]. The 
speed at which a CPU can execute these cycles is dictated 
primarily by its clock speed which is measured in “hertz”. 
Modern CPUs are so fast they are measured in “gigahertz 
(GHz)” which is represented mathematically as 109 Hz. As 
microprocessor companies battled to try and obtain higher 
clock speeds, they began to hit a limit around 3-4 Ghz. To 
continue making processors faster whilst avoiding clock 
speed limitations, chip manufacturers had to come up with 
some new solutions. The two solutions that will be rele-
vant to this report are Simultaneous Multithreading (SMT) 

[2] and “Speculative Execution” [3]. 

1.1 Simultaneous Multithreading (SMT)

SMT is a technology that allows CPUs to subdivide 
their physical cores into multiple logical cores. Tradition-
ally this division of cores would be 2 logical cores per 1 
physical core. However, even when a physical CPU core 
has 2 logical cores, this does not double the capabilities 
of the physical core as both logical cores share many re-
sources with the physical core, however, they do provide 
enhanced performance. The way this performance en-
hancement is achieved is that logical cores can operate in 
parallel with each other which allows them to execute in-
structions in multiple threads at the same time. A common 
implementation used with simultaneous multithreading is 
speculative execution. 

1.2 Speculative Execution

A CPU can execute programs in multiple ways but the 
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two relevant to this report are standard instruction execu-
tion and speculative execution. With standard instruction 
execution, the microprocessor does not execute any in-
structions until the program requests those instructions to 
be carried out and cannot carry out new instructions until 
prior instructions have been completed. This is called “In 
Order Execution”. Instead, speculative execution allows 
one logical core to pre-emptively begin working on an in-
struction that the program may use soon, whilst the other 
logical core is working on executing the current instruc-
tion it has been given. This is called “Out of Order Exe-
cution”. If it becomes apparent the instructions were not 
required, they can be discarded. A common method used 
in computer programs is called “control flow” (Figure 1). 
With control flow, a program will meet a condition where-
by the program will wait until the condition resolves to be 
true or false. When it has been resolved the program will 
follow the consequent path of the result.

Figure 1. Control Flow Diagram [4]

It is common for speculative execution to predict the 
control flow of a program and execute it in parallel. This 
is done via a set of extremely complex algorithms and 
mechanisms within the CPU that can learn which path the 
control flow normally follows.

2. Memory

Memory is broken up into address spaces which are 
allocated to system processes and devices. The address 
space allows a CPU to know where in the memory it 
needs to look to access the data a program or device re-
quires. Memory in a computer is generally separated into 
two categories; main memory also known as Random Ac-
cess Memory (RAM), and cache memory which is stored 
on the CPU itself. Memory can be Physical or virtual; a 
physical memory address space is one that exists in system 
memory or cache memory whereas virtual memory (often 

known as a page file) is a file that is created on a storage 
drive such as a Hard Disk Drive (HDD) or a Solid-State 
Drive (SSD). When a process runs, it is assigned a pool of 
virtual memory. The process will be given the impression 
that it is working with large contiguous sections of memo-
ry, however, the memory of the process may be dispersed 
across many different sectors of the physical memory. 
When a CPU instruction is executed, it will either create 
data and store it in memory or if it requires data it will 
retrieve it from memory. When either of these requests is 
made, the page file will translate the mapping of the vir-
tual memory address to the physical memory address that 
the data are to be stored in or is currently stored in.

To understand further how memory is used within a 
system, the following example provides simple pseudo-
code to show a basic calculation and explain what hap-
pens during the calculation:

integer X = 1 +2 (X now holds the value 3)
integer Result = X + 2 (Result now holds the value 5)
Print Result (The value stored in result is displayed on 

screen)
In this example, the sum of 1 + 2 is stored in an inte-

ger called X. Then a new integer called Result adds 2 to 
whatever the value stored in X is. This value is stored in 
the system memory so when the program moves to the 
next line, it can fetch the value of X from the memory and 
add 2 to it. The value of Result is now 5 and again this 
is stored in system memory. Finally, the value stored in 
Result is retrieved from system memory and is printed on 
screen, displaying the number 5 to the user.

The performance of memory relates to how quickly 
it can be accessed which is defined by two factors, its 
speed and its latency. The speed of memory indicates how 
fast it can process data whereas the latency dictates how 
long it will take between a command being entered and 
executed [5]. RAM speeds have historically not matched 
CPU Speeds and it is common to see even modern RAM 
only operate at speeds around 2.5-3 Ghz. This created a 
situation where the CPU would be left waiting around for 
the slower RAM to catch up with it which wasted CPU 
cycles. One measure taken to help address this issue was 
for CPU manufacturers to begin integrating cache mem-
ory onto the CPU itself. Cache comes in much lower ca-
pacities than RAM with even modern CPUs in 2019 only 
featuring around 100Mb of cache memory. However, due 
to cache memory living on the CPU package, the latency 
for cache memory is usually only a few nanoseconds ver-
sus potentially 80 nanoseconds or higher when accessing 
RAM [6]. When a CPU wishes to access something from 
RAM, it will copy that data into its cache so in the event it 
requires access to it again. It is readily available and much 
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quicker to access. When there is no more space or the data 
are no longer required, it will be cleared from the cache.

3. Kernel and Side-Channel Attacks

All operating systems have a computer program known 
as the “Kernel”. The kernel is the core of a computers op-
erating system and operates with complete control over all 
aspects of the system. As such it is imperative that it re-
ceives its own dedicated and protected memory allocation 
as if a program or outside system could access the kernel, 
they could potentially gain access to private or sensitive 
data stored in the kernel. The operating system handles 
this allocation of memory via a process called “Memory 
Isolation” [7]. Memory Isolation ensures that a program 
cannot access another programs memory, the kernel mem-
ory or anything else stored in protected memory that is 
not allocated to the program that is trying to access it. 
This allows computers to safely run multiple programs at 
the same time whilst ensuring the security of a program 
or the entire system is not compromised. However, the 
system must still be able to interact with the kernel and 
so this is handled by a supervisor bit on the CPU that de-
fines whether an aspect of the kernel can be accessed or 
not. This bit is only set when entering the kernel program 
and it is cleared when switching to user processes. This 
ensures a level of security as it means no program will 
definitively know the supervisor bit due to it being set 
during entry to the kernel and cleared during the exit from 
the kernel.

A traditional exploit would attack by looking for a 
vulnerability within a programs code. Modern operating 
systems will provide a software implementation to ensure 
that this sort of direct exploit cannot occur by ensuring 
the kernel memory cannot be accessed by outside pro-
grams due to being stored in protected memory. In the 
event such an exploit was found, this would be rectified 
via a software patch very quickly. A side-channel attack 
instead exploits how an operating system communicates 
with hardware upon which the operating system runs. A 
side-channel attack monitors the physical emissions pro-
duced by electronic circuits including power consumption, 
electromagnetic fields, time to execute commands and 
even the sounds the CPU makes when it’s running. The 
information gathered about these emissions can be reverse 
engineered to decipher what the computer is doing. This 
means side-channel attacks are hardware and software 
agnostic and can target any hardware or software that may 
be vulnerable [8].

4. Meltdown

In 2017 several security experts discovered 3 hardware 
vulnerability exploits within most modern CPUs that uti-
lised side-channel attacks. Referred to initially as variants 
1, 2 and, 3, they later received the public names Spectre 
and Meltdown. The Meltdown exploit (Variant 3) was 
independently reported and discovered by 3 teams, Jann 
Horn from Google Project Zero, Werner Haas and Thom-
as Prescher from Cyberus Technology and, Daniel Gruss, 
Moritz Lipp, Stefan Mangard and, Michael Schwarz of 
the Graz University of Technology [9]. The vulnerability 
was reported to the public on the 3rd of January 2018 [10]. 
Meltdown operates using a cache attack. A cache attack is 
one that occurs when speculative code execution moves 
data between RAM and cache memory. To explain this 
further, an example is provided.

A user visits a website that has a malicious cache attack 
script on it. The script is designed to steal the users’ Wi-Fi 
password. The script will load an image that will be used 
later in the attack. The script first must make sure that 
the Wi-Fi password is not stored in the cache. To achieve 
this, it will write junk data to the main memory which will 
then be copied into the cache ultimately flushing it of its 
current data. The script will then attempt to read the Wi-Fi 
password from protected memory. At this time the value 
will be copied into the cache from the RAM as there has 
been a read request for it. The memory in the cache now 
consists of the junk data the attacker has assigned and the 
Wi-Fi password. The program will now attempt to retrieve 
1 value in the Wi-Fi password from the cache and load 1 
pixel of the image based on the time it takes for this value 
to return. To do this they will check the first memory ad-
dress after their junk data they filled the cache with earlier. 
The attacker can discern that a fast load of the pixel indi-
cates a fast read which would mean the value is stored in 
the cache and hence must be the value they are seeking. If 
the read is slow it means it was retrieved from RAM and 
hence is not the data they are looking for. The following 
pseudocode shows an idea of how this setup is achieved 
with the presumption the memory pool is 1020 bytes in 
size.

“If (memoryAddress1001 contains the letter S) {
read the first pixel of the image that was loaded earlier
}

Repeat this incrementing 1 byte to the memory address 
each time.

However, the protected memory will obviously stop 
this from occurring as it knows this program shouldn’t 
be able to access that data and the data would not be cop-
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ied from RAM to the cache as the program will not be 
allowed to access the protected memory where the Wi-Fi 
password is stored. Unfortunately, speculative execution 
is not protected. If the CPU executes the malicious code 
speculatively, then the data will be moved to the cache as 
the speculative execution takes place. The attacker is then 
free to proceed with the attack and obtain the Wi-Fi pass-
word as outlined in the example.

Fundamentally the flaw exists due to certain processors 
not using protected memory during speculative execution. 
This issue applied to every Intel CPU since 1995 [11] which 
meant that the majority of consumer and server PCs were 
vulnerable to this sort of attack. Additionally, ARM who 
provide CPU designs to Qualcomm and Apple also con-
firmed that some of their CPUs were also vulnerable to 
the attack which meant many smartphones were also vul-
nerable [12].

5. Spectre

The Spectre vulnerability was independently reported 
and discovered by two people, Jann Horn from Google 
Project Zero and Paul Kocher in collaboration with Daniel 
Genkin from the University of Pennsylvania and Univer-
sity of Maryland, Mike Hamburg from Rambus, Moritz 
Lipp from Graz University of Technology, and Yuval Yar-
om from the University of Adelaide and Data61 [7]. Spec-
tre is related to Meltdown in its execution. The exploit is 
again a side-channel attack and again targets vulnerabil-
ities with how speculative execution manages memory. 
However, unlike Meltdown, both variants of Spectre have 
been confirmed to exist on nearly all CPUs created by In-
tel, AMD, ARM and most other CPU manufacturers [11].

Spectre has two variants; variant 1 is a “Bounds check 
bypass” and variant two is a “Branch target injection”. 
These will both be covered going forward, starting with 
the variant 1: bounds check bypass.

5.1 Variant 1: Bounds Check Bypass

A “bounds check bypass” in a simple form is a 
side-channel whereby a malicious program will exploit 
speculative execution to access data stored in a protected 
memory store that lives next to the memory allocated to 
the malicious code. To explain this further, an example 
is provided. A user has a program that creates an array 
of data that is 4 bytes in size. They then create an integer 
variable called length with a value of 1000. The program 
performs an if statement that checks if the length value 
is less than the value of the array. If the statement is true, 
then the input will be stored in the data. This may look 
like the following:

data = [1, 2, 3, 4]
input = 1000
if (input < data.size) {
 data[input]
}

On the surface, this standard block of code may appear 
innocuous and with a standard in order execution method, 
it would be completely safe. However, due to how specu-
lative execution functions this can be exploited with an 
out of bounds read. The attacker will follow a set of steps, 
like those used in the Meltdown exploit.

Initially, the attacker will train the branch predictor 
to expect the statement to normally resolve to true by 
changing the input value to something that is less than the 
size of the data array and executing the program multiple 
times. The attacker will then clear out the cache to ensure 
it no longer stores the protected value. When the attacker 
has completed this they will then change the input value 
to be much higher than the length of the data array, in this 
example, the input value is changed to 1000. The data 
array size is stored in RAM prior to being copied to the 
cache memory which means it will take a long time to 
access prior to executing the code due to the CPU being 
much faster than the RAM. To avoid wasting CPU cycles 
the speculative execution will execute the if statement 
prior to evaluating the size of the data array. It will pre-
dict that the if statement will resolve to true due to the 
prediction training performed earlier. It is at this point 
that the exploit can occur. When the CPU speculatively 
executes the if statement, it doesn’t know the actual length 
of the array yet and hence it will perform the read based 
on the input variable size. This means that whilst the data 
array may only be 4 bits in length, it will read 1000 bits 
which can allow the program to read memory past what 
it should be allocated such as protected memory where 
private data is stored. The value that is read from private 
memory will be then stored in the cache memory. At some 
point, the CPU will realise that the actual size of the data 
array is less than the input value and hence determines 
the result of the if statement to be false. When this hap-
pens, the CPU will clear the stored data in RAM from the 
speculatively executed code and the private data that was 
accessed during the speculative execution is also cleared. 
However, whilst the memory is cleared from RAM, it is 
not cleared from the cache and much like Meltdown, the 
attacker can use a time-based attack to figure out what 
value is stored in the cache.

In this example, the attacker can simply perform a read 
request that tries to guess a value that was in the protected 
memory. If the value is returned very quickly, they can 
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determine the value is stored in the cache memory which 
indicates it must be one of the protected values that were 
copied from RAM during the out of bounds read. If the 
value takes a longer amount of time, they know it is being 
returned from RAM. At this point, the attacker can sim-
ply repeat this process using different values for the input 
variable until they have obtained as much private data as 
they want to [13].

5.2 Variant 2: Branch Target Injection

The second variant of Spectre is known as a “Branch 
target injection” exploit. With Spectre variant 1, the attack 
is based on the conditional branch prediction. In the ex-
amples shown in both the Meltdown and Spectre Variant 
1 sections of this report, this was an if statement. Variant 
2 of Spectre instead uses indirect branching. Indirect 
branching is a feature built into all modern CPUs that al-
lows the program to go to any memory address that is dic-
tated as per the program. This allows an attacker to target 
where the speculative execution occurs rather than having 
to execute it in a conditional statement and then access 
the protected memory addresses in a similar fashion to the 
example provided in variant 1. The destination at which 
a speculative attack occurs is referred to as the “gadget”. 
A gadget is a small group of instructions that end with a 
return instruction. It will usually be a piece of code that 
existed already within the victims’ code. The gadget will 
be at a destination in the program that allows access to the 
memory address space the attacker wishes to read.

The concept behind the attack is as follows:
The attacker will train the branch predictor so the 

speculative execution will go to the gadget in the code. 
The attacker then clears out the cache to ensure it no lon-
ger stores the protected memory. The code will then run 
the gadget speculatively to gain access to the memory 
address space they wish to obtain protected data from. At 
this point, the same methods used by variant 1 are imple-
mented such as a time-based attack to determine which 
values are in the cache by checking how long a read re-
quest takes.

6. Mitigations and Performance Impact

Due to Meltdown and Spectre being hardware-level 
flaws, they cannot be conclusively patched as the vul-
nerability is one that requires changes in the physical 
architecture of the CPUs to fix. However, the problem is 
incredibly severe and dangerous, so it is also impossible 
to ignore it. The only solution that would provide com-
plete protection would be to replace the vulnerable CPUs 
with newer models where the hardware vulnerability has 

been fixed at an architectural level. Another solution was 
to disable SMT on the affected CPUs, the drawbacks of 
this solution will be detailed in the Apple section of this 
report. Given the number of processors that are vulnerable 
to these attacks, it is unfeasible to ask every consumer or 
customer to replace their CPUs, so an alternative solution 
had to be created.

The result was a set of mitigations implemented via 
patches to the operating systems that were created by the 
OS vendors, and microcode updates that were created by 
the CPU manufacturers in conjunction with motherboard 
vendors that were shipped in the form of a Basic Input 
Output System (BIOS) update. However, mitigation by 
the Oxford Dictionary definition is “The action of reduc-
ing the severity, seriousness, or painfulness of something.” 
[14]. By this definition, it can be seen clearly that mitigation 
is not an absolute solution to the problem. The operating 
system level mitigations were handled by the organisa-
tions behind each operating system. How each operating 
system handles the mitigation varies and hence there must 
be an independent review conducted for each platform. 

6.1 Linux

Ever since Linux was created, it mapped its kernel 
memory into the address space of every running process. 
This choice was made mostly for performance reasons as 
it means if a process needs to interact with something in 
the kernel, it has a mapping of the kernel address already 
and doesn’t need to seek it out. This may sound dangerous 
but due to how CPUs manage memory, they can usually 
be trusted to prevent the user space from accessing the 
kernel memory. To try and ensure that the kernel address 
space was not easily accessed, a system called “kernel 
address-space layout randomization” (KASLR) was used 
[15]. KASLR randomized where the kernel is placed in 
the virtual memory address space every time a machine 
is booted. In theory, this meant an attacker would not be 
able to easily find out where the kernel address space was, 
even if it was mapped to a process. However, KASLR 
was not absolute and it suffered from information leaks 
that allowed attackers to then gain access to where the in-
formation may be stored. KASLR was able to be patched 
to close off these leaks but this is only a software solution 
and it does not provide any security if the exploits exist at 
a hardware level, such as Meltdown and Spectre.

The only feasible solution to mitigate the hardware 
level exploits was to discontinue the practice of mapping 
the kernel address space to a process, effectively making 
it inaccessible from the userspace. The solution to this 
was dubbed kernel address isolation to have side-channels 
efficiently removed” (KAISER) [16]. KAISER provides 

DOI: https://doi.org/10.30564/ssid.v3i1.3151



29

Semiconductor Science and Information Devices | Volume 03 | Issue 01 | April 2021

Distributed under creative commons license 4.0

an implementation of separated address spaces for the 
kernel. What this means is that rather than the entire ker-
nel address space being mapped to a process, the kernel 
mapping will instead be limited to only map the required 
addressed that are needed to enter and exit the kernel. As 
this is only a mitigation, it does not provide complete pro-
tection from the leaks and even the entry/exit information 
could be used to reveal where the memory address space 
that the kernel is stored in. However, this minimal ker-
nel data is trusted meaning it falls under a set of security 
policies that prevent trusted components from being con-
trolled my malicious code [17]. 

As it has been established that the Linux kernel mapped 
the kernel address to processes for performance, it is im-
plied that there would be a performance regression when 
moving to KAISER. This performance impact depends on 
several systems which are as follows:

•  System Call rates: The rate at which a program re-
quests a service from the kernel [18].

•  Context Switches: How a CPU can change from one 
process to another while ensuring they do not conflict (this 
is how multitasking is achieved on PCs or smart devices) 
[19].

•  Page fault rate: The rate at which a program may try 
to access a memory address that is not currently mapped 
to the virtual address space of that process [20].

•  Working set size: Defines the amount of memory that 
a process requires in a given time interval [21].

•  Cache access pattern: The pattern in which a system 
reads and writes to the cache [22].

With the change to KAISER, these systems can suffer 
from a reduction in performance that may range from as 
little as a 1% regression to as high as an 800% perfor-
mance regression based on the program and which system 
or combination of systems it uses and how often it uses 
them [23]. These performance regressions will be lessened 
as programs are updated to try and reduce the usage of 
any systems that are causing severe performance regres-
sions. It is noted in Brendan Greggs article that at the time 
of writing he was working for Netflix, one of the largest 
media-services providers in the world. He stated, “I’m 
expecting the cloud systems at my employer (Netflix) to 
experience between 0.1% and 6% overhead with KPTI 
due to our syscall rates, and I’m expecting we’ll take that 
down to less than 2% with tuning” [23]. It could be deter-
mined that 6% performance regression does not sound like 
a large amount but for a company like Netflix with many 
servers and extensive infrastructure, it means a loss in ef-
ficiency and that ultimately costs money. As evidenced by 
the quote, they intend to tune their software to try and en-
sure the impact is less than 2%. This indicates that Netflix 

perceives a 6% performance regression to be more than 
they are willing to accept and would rather invest their 
resources in trying to reduce this performance regression 
than living with it.

6.2 Windows

Windows does not manage its kernel in the same way 
as Linux did and hence it had a different approach to mit-
igating the Meltdown and Spectre vulnerabilities. With 
the kernel, Microsoft implemented a form of mitigation 
known as Kernel Virtual Address Shadow (KVA Shadow). 
This implementation creates two separate page directories 
for each process. The first page maps the user page tables 
which only contain the user mode mappings and a small 
number of kernel transition pages. The second page maps 
the kernel page tables which contain the user and kernel 
mappings for a process. In a simple form, this means sen-
sitive kernel memory content is removed from the virtual 
address space for a process meaning a process cannot 
see or access sensitive kernel memory. This is a similar 
concept to that applied in the KAISER approach and in 
Microsofts’ blog post about the matter, they say “This 
mitigation draws inspiration from prior research known 
as KAISER” [24]. In more technical terms, the kernel map-
pings for a process will only have limited functions such 
and enter/exit that are trusted. The two page tables are 
used alongside each other so if a process is only executing 
code in the user mode, the user-mode page table is used. 
If a process needs to execute code in the kernel mode, the 
code is trapped and executed inside the kernel mode page 
table on behalf of the process.

Additionally, Microsoft created a speculation barrier 
flag that was implemented within Visual Studio; the Inte-
grated Development Environment developed by Microsoft 
for creating software for windows. The flag enables the 
identification of some areas of the code that may be sus-
ceptible to a speculative execution attack. The flag will 
identify these areas when compiling the code and can 
insert instructions that would prevent these executions 
from being exploitable. They then rebuilt any Windows 
software that would be potentially susceptible to such an 
exploit and pushed the update to users in the January 2018 
security update [24]. However, this flag and the compiler 
cannot guarantee 100% coverage of these exploit scenar-
ios so, in an attempt to improve the coverage they intro-
duced a bounty program offering rewards to anyone who 
could find any instances of the exploit that remained [25]. 
Additionally, the Just in Time (JIT) compilers that operate 
within Microsoft Edge and Internet Explorer were both 
patched to provide mitigations to the exploits as well. 

Outside of technical mitigations Microsoft developed, 
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they also provided a selection of suggestions regarding 
writing software to mitigate against the attacks. One such 
suggestion is to ensure a program removes sensitive con-
tent from memory to ensure if a speculative attack were to 
occur, there would be no sensitive information for it to ac-
cess. Microsoft claims that with 2016 era CPUs from intel 
such as Skylake, Kabylake or newer, the performance 
regression was single digit which would be negligible 
for the average consumer although again, a concern for 
larger industry infrastructure. Whilst not reporting exact 
numbers, a quote from a blog post claimed that 2015 era 
CPUs from Intel such as Haswell or older “show more 
significant slowdowns, and we expect that some users will 
notice a decrease in system performance.” [26]. Perhaps 
more concerning is another quote from the same blog that 
claims, “Windows Server on any silicon, especially in any 
IO-intensive application, shows a more significant perfor-
mance impact when you enable the mitigations to isolate 
untrusted code within a Windows Server instance”. Due 
to Microsoft being a private company with closed source 
software and extensive business partnerships within both 
the consumer and, industry space, they have been less 
forthcoming with direct numbers. Microsoft claims that 
mitigations against variants 1 and 3 saw little performance 
regression and that the bulk of the impact was in their 
patch relating to variant 2. In May 2019, Microsoft re-
leased a security update for windows that included Retpo-
line; a mitigation strategy developed by google to prevent 
branch target injection. This mitigation was claimed to re-
duce the performance regression; especially the regression 
found in SSD read/write scenarios down to 1-2% from the 
previous 30%. 

6.3 iOS and macOS

In January 2018, Apple released security updates to 
both macOS, an x86 based operating system for desktop 
and iOS, an ARM based operating system for iPhone 
and iPad. macOS operates on top of Unix which could 
indicate their mitigations are more in line with the Linux 
mitigations and iOS is based off macOS in some respects 
so it may be similar. Apple has not released the technical 
details of how they have implemented their mitigations, 
however, they did release a list of the security fixes imple-
mented in the updates [27]. 

With these software mitigations fixes Apple claims the 
Meltdown mitigation resulted in “no measurable reduction 
in performance” for either macOS or iOS when testing 
using GeekBench 4, Speedometer, Jetstream and, ARES-
6 [28] which are a collection of benchmarking tools that 
target various aspects of a PC to gain an understanding of 
the performance of the system. With regards to Spectre, 

Apple claims that at worst they saw a 2.5% performance 
regression which would be borderline negligible. Apple 
does not traditionally have a large foothold in larger IT 
infrastructure and as such the performance penalties gen-
erally apply to consumer-level hardware. However, Apple 
did suggest a solution for those in more security-sensitive 
positions that they claim offers “full protection”. This 
solution was to disable Hyperthreading [29]. Hyperthread-
ing is the branding Intel uses for SMT. The logic behind 
this solution is that the Spectre and Meltdown flaws both 
rely on simultaneous multithreading to perform the specu-
lative execution and hence by disabling Hyperthreading, 
the speculative execution can never occur. This solution 
has also been proposed by Intel, Microsoft and, Linus Tor-
valds who is the creator of the Linux kernel.

However, the reason this solution is not generally rec-
ommended or implemented is due to it being generally 
unfeasible for most users. Disabling Hyperthreading has 
the potential for signification performance reductions that 
exceed that of the software mitigations that have been 
provided but would provide complete mitigation that 
would not require a hardware fix. As to whether this can 
be called a solution is debatable. It is not so much a fix as 
complete avoidance of the issue, however, it does provide 
“full protection” in a sense. According to Apple, the per-
formance impact of disabling hyperthreading could be as 
high as 40% [29].

7. Conclusions

In summary, the technologies created to increase the 
performance of CPUs such as speculative execution have 
been implemented with a large oversight with regards 
to security. The Spectre and Meltdown vulnerabilities 
showed how hardware-level vulnerabilities could be 
exploited on modern CPUs, with potentially devastat-
ing consequences regarding sensitive data, both in the 
consumer space and the larger IT industry. With all pro-
posed solutions bearing an impact on the performance of 
affected CPUs, there is a corresponding financial cost for 
the companies this performance regression affects. With 
looming technologies on the horizon such as RISC-V that 
seek to upset the status quo of the x86 and ARM duopoly, 
the CPU manufacturers will bear the brunt of this over-
sight as partnered companies will no doubt either seek 
reimbursement or reconsider their partnerships with the 
manufacturers going forward.
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