
1

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0 https://doi.org/10.30564/ssid.v3i2.3347

Semiconductor Science and Information Devices

https://ojs.bilpublishing.com/index.php/ssid

ARTICLE

Extracting Cryptographic Keys from .NET Applications

Shaun Mc Brearty1* William Farrelly2 Kevin Curran3

1. Institute of Technology, Sligo, Ireland
2. Letterkenny Institute of Technology, Letterkenny, Ireland
3. Ulster University, Derry, United Kingdom

ARTICLE INFO ABSTRACT

Article history
Received: 10 June 2021
Accepted: 28 June 2021
Published Online: 5 July 2021

In the absence of specialized encryption hardware, cryptographic operations
must be performed in main memory. As such, it is common place for cyber
criminals to examine the content of main memory with a view to retrieving
high-value data in plaintext form and/or the associated decryption key. In
this paper, the author presents a number of simple methods for identifying
and extracting cryptographic keys from memory dumps of software
applications that utilize the Microsoft .NET Framework, as well as source-
code level countermeasures to protect against same. Given the EXE file of
an application and a basic knowledge of the cryptographic libraries utilized
in the .NET Framework, the author shows how to create a memory dump
of a running application and how to extract cryptographic keys from same
using WinDBG - without any prior knowledge of the cryptographic key
utilized. Whilst the proof-of-concept application utilized as part of this
paper uses an implementation of the DES cipher, it should be noted that the
steps shown can be utilized against all three generations of symmetric and
asymmetric ciphers supported within the .NET Framework.

Keywords:
Cryptography
Cryptanalysis
Memory dump analysis
Memory hygiene
Key finding attack
Secure coding
.NET framework

　

*Corresponding Author:
Shaun Mc Brearty,
Institute of Technology, Sligo, Ireland;
Email: mcbrearty.shaun@itsligo.ie

1. Introduction

A memory dump is generated when the contents of
computers’ main memory and CPU registers - at a specific
moment in time - are written to file.

Memory dumps are auto-generated by modern opera-
ting system whenever a fault occurs during the execution
of the operating system itself or any processes it is exec-
uting. In addition, it is also possible for computer users
to manually generate a memory dump for a given process
while the system is running. While traditionally utilized
by software developers for diagnostic purposes, memory
dumps have also been utilized by cybercriminals to gain
access to sensitive data that is resident in main memory [1].

A number of recent cyber-attacks have utilized memory
dumps to gain access to user passwords and authentication
tokens [2-5]. In addition, a number of high-profile password
management applications have recently been found to
contain numerous memory hygiene vulnerabilities that can
easily be exploited using memory dumps to gain access to
user password information [6].

In order to protect sensitive data in main memory,
software developers must exercise good memory hygiene. In
essence, sensitive data must only reside in main memory for
the duration of time that it is required and must be expunged
once no longer required for further processing [7].

In this paper, the author presents a simple approach to
extract cryptographic keys from memory dumps of software

Copyright
Journal of Architectural Environment & Structural Engineering Research is licensed under a Creative Com-
mons-Non-Commercial 4.0 International Copyright (CC BY- NC4.0). Readers shall have the right to copy and distribute
articles in this journal in any form in any medium, and may also modify, convert or create on the basis of articles. In
sharing and using articles in this journal, the user must indicate the author and source, and mark the changes made in
articles. Copyright © BILINGUAL PUBLISHING CO. All Rights Reserved.

2

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

applications that utilize the Microsoft .NET Framework
[8], as well as countermeasures to protect against and
prevent same. Given the EXE file of an application and
a basic knowledge of the cryptographic libraries utilized in
the .NET Framework [9], the author shows how to create a
memory dump of the running application and how to extract
cryptographic keys from same using WinDBG [10] without
any prior knowledge of the cryptographic key utilized.

The attack is shown in three scenarios - one where no
steps have been taken to prevent cryptographic keys from
being extracted from memory dumps, and one where
steps have been taken to remove cryptographic keys from
memory, albeit, ineffectively. Finally, the necessary steps
to defend against same are demonstrated at the source
code level.

1.1 Motivation

The author was motivated to carry out this research after
encountering a programming tutorial on the Microsoft
MSDN website outlining how to encrypt and decrypt the
contents of a TXT file using the DES cipher (demonstrated
using the C# programming language) [8,9]. A unique feature of
the tutorial was the inclusion of a Method which claimed to
remove a cryptographic key from main memory after it was
utilized by the application. The Method in question was
defined as an External Method [11] named ZeroMemory()
- which was configured to execute the RtlZeroMemory
function contained within KERNEL32.DLL (a DLL that is
external to the .NET Framework - but which is associated
with the Windows Operating System).

The author is an experienced C#.NET developer and
considered the use of this mechanism to be non-standard;
as such, the author opted to research the effectiveness of
this mechanism.

1.2 Related Work

Identifying cryptographic keys in memory dumps were
first considered by Shamir and van Someren [12]. In their
seminal paper, the authors outline two approaches for
identifying the presence of cryptographic keys in memory
dumps: one for identifying the presence of symmetric
and asymmetric keys based on data entropy and another
for identifying private RSA keys based on mathematical
properties.

Klein [13] showed how to extract RSA private keys and
SSL certificates from memory dumps of Apache web serv-
ers running on the Microsoft Windows platform (using
IDA Pro). Klein identifies the presence of same in memory
utilizing a pattern matching mechanism based on the file
format outlined in the PKCS #8 and x509 specifications.

Taubmann et al. [14] utilizes a combination of both appro-
aches outlined previously to identify TLS session keys in me-
mory dumps of Android OS applications.

In addition to analyzing memory dumps produced on
running systems, significant research has also focused
on so called ‘cold-boot-attacks’ whereby a hard reset is
performed on a running computer systems and the data
remaining in RAM is dumped to file prior to rebooting [15-

17]; evidently, this approach requires physical access to the
target system in comparison to the approaches outlined
previously (which only require digital access).

To the best of the author’s knowledge, this paper is the
first to show how to identify and extract cryptographic
keys from memory dumps associated with the .NET
Framework.

1.3 The .NET Framework

The .NET Framework is a software framework
developed by Microsoft that offers a large collection of
pre-written Classes and functionality that greatly simplifies
the process of developing software applications for the
Microsoft Windows operating system. Programs written
for the .NET Framework execute in an application virtual
machine environment known as Common Language
Runtime (CLR). The CLR provides many services to
applications - including automated memory management/
garbage collection. The .NET Framework supports the
execution of programs written in over 20 languages, the
most popular being C# and VB. Since Windows XP SP1
(released in 2002), the .NET Framework comes pre-
installed with all versions of Microsoft Windows [8].

1.4 Cryptography in the .NET Framework

The .NET Framework includes support for three
generations of cipher implementations. Ciphers supported
within the .NET Framework include DES, AES,
TripleDES, RC2, Rijndael and RSA.

The first generation of ciphers is denoted by the
suffix CryptoServiceProvider in the Class name, e.g.
DESCryptoServiceProvider. The functionality of the first
generation of ciphers is defined externally to the .NET
Framework (within DLLs that are native to the Windows
Operating System).

The second generation of ciphers is denoted by the
suffix Managed in the Class name, e.g. AESManaged.
The associated library Classes are native to the .NET
Framework and have been available since version 3.5 of
the.NET Framework (November 2007).

The most recent generation of ciphers is denoted by

https://doi.org/10.30564/ssid.v3i2.3347

1 Cng: Cryptography Next Generation.

3

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

the suffix Cng1 in the Class name, e.g. AESCng. The
associated library Classes are also native to the .NET
Framework and have been available since version 4.6.2 of
the.NET Framework (August 2016) [18].

Note that the proof-of-concept application utilized as
part of this paper uses the DESCryptoServiceProvider
implementation of the DES cipher; however the attacks
shown are also effective against all other symmetric and
asymmetric ciphers in the .NET Framework - across all
three of the aforementioned generations.

1.5 Proof-of-concept Application

The proof-of-concept application utilized (see Figure
1) is derived from the previously mentioned programming
tutorial on the Microsoft MSDN website [8,9]. The tutorial
shows how to encipher and decipher the contents of a text
file using a symmetric key that is randomly generated by
the application at runtime. The tutorial also includes steps to
remove the cryptographic key from main memory; however
as shown in Section 3.2, these steps are ineffective as it is
in fact possible to recover the cryptographic key from a
memory dump produced whilst the application is running.

The proof-of-concept application utilized in this paper
comprises five Methods: GenerateKey(), EncryptFile(),
DecryptFile(), ZeroMemory() and Main().

• The GenerateKey() Method randomly generates a 64-
bit symmetric key using the DESCryptoServiceProvider
Class of the .NET Framework and returns the cryptographic
key as an ASCII encoded eight-character String Object.

• The EncryptFile() Method reads the contents of a
(plaintext) TXT file into main memory, encrypts the data,
and then writes the encrypted data to a different TXT file.
Note that the text files and cryptographic key to be utilized
are specified as Method Parameters.

• The DecryptFile() Method reads the contents of a
(encrypted) TXT file into main memory, decrypts the data,
and then writes the decrypted data to a different TXT file.
Again, the text files and cryptographic key to be utilized
are specified as Method Parameters.

• The Main() Method utilizes each of the aforemen-
tioned Methods. The String value, i.e. the symmetric key,
randomly generated by the GenerateKey() Method is
assigned to a String variable and is first passed into the
EncryptFile() Method to be used for encryption purposes.
Following the completion of the EncryptFile() Method,
the cryptographic key is then passed into the DecryptFile()
Method. The EncryptFile() Method is configured to read
plaintext data from ‘MyData.TXT’, and to write encrypted
data to ‘Encrypted.TXT’; whilst the DecryptFile() Method
is configured to read encrypted data from ‘Encrypted.
TXT’, and to write plaintext data to ‘Decrypted.TXT’. In

addition to this, a GCHandle Object is also created in the
Main() Method. The GCHandle Class is used to track the
location of an Object in main memory (à la Pointers in
the case of programming languages which require manual
memory management) - in this case, the Object being
the cryptographic key generated by the GenerateKey()
Method. In turn, the GCHandle Object is passed into
the ZeroMemory() Method (discussed next) in an effort
to remove the associated cryptographic key from main
memory [19].

• The ZeroMemory() Method is notable in that it’s
functionality is implemented in the KERNEL32.DLL
included as part of the Microsoft Windows operating system.
The purpose of this Method is to replace all data located
at a specific address in RAM with a sequence of zeros - in
this case, the randomly generated symmetric key whose
address is contained within the GCHandle Object mentioned
previously. It should be noted that the name of this Method
within the KERNEL32.DLL is actually RtlZeroMemory;
however it has been assigned the name ZeroMemory() in the
application source code. Is should also be noted that the
KERNEL32.DLL is not a part of the .NET Framework [20].

Three versions of the proof-of-concept application
were developed and analyzed as part of this research.

• Version A comprises the source code shown in Figure
1, with the exception of line 47 and lines 50 - 52. Version
A makes no attempt to remove the cryptographic key from
memory (other than relying on the automatic execution of
the Garbage Collector by the .NET Framework [21]).

• Version B comprises the source code shown in Figure
1, with the exception of line 52. Version B attempts to
manually remove the cryptographic key from memory
through the use of the ZeroMemory() Method outlined
previously.

• Version C comprises the full source code shown in
Figure 1. Version C successfully removes the cryptog-
raphic key from memory through the manual execution of
the Garbage Collection routine. Version C was developed
by the author to address the issues identified when analy-
zing Version A and Version B.

1.6 WinDBG

WinDBG is a multipurpose debugging tool produced
by Microsoft for debugging a variety of software applic-
ations, including user applications, device drivers and the
Windows operating system [10].

In relation to the goal of this paper, the major functio-
nality of interest is the ability to view all .NET Objects
contained within the portion of main memory managed by
the .NET Framework [22].

Figure 2 shows sample output of executing the !dum-

https://doi.org/10.30564/ssid.v3i2.3347

4

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

pheap -stat command on a memory dump in WinDBG. The
command provides a summarized list of the contents of the
memory dump. The list comprises the set of all Classes with
instances in main memory, the number of instances of the Class,
the amount of space occupied by all instances of the Class , as
well as the address of the Method Table (MT) for the Class -
which contains the list of all instances of the Class as well as
the address of each individual instance in memory.

Figure 2. Sample Output of !dumpheap -stat Command in
WinDBG.

It should be noted that the information contained within
memory dumps cannot be traced back to the variables/
references to which they are assigned at the source code

level - as is the case with source-code level debugging.

1.7 Objects of Interest within Memory Dumps

Given the functionality of WinDBG outlined previously,
instances of the following Classes are of interest in relation
to retrieving cryptographic keys from memory captured
from the proof-of-concept application:

• String
• DESCryptoServiceProvider
• Byte Arrays, i.e. byte[]
The inclusion of the String Class is based on the

fact that cryptographic keys and Initial Vectors (IVs)
are stored using String Objects in the source code of
the proof-of-concept application. The inclusion of the
DESCryptoServiceProvider Class is based on the use of
the Class for encrypting and decrypting the content of text
files whilst the inclusion of the Byte Array Class is based
on the author’s observation that all cryptographic libraries

Figure 1. Source Code for Proof-of-Concept Application.

https://doi.org/10.30564/ssid.v3i2.3347

5

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

of the .NET Framework utilize Byte Arrays for storing
cryptographic keys and IVs [9].

1.8 Attack Model

Note that in order to utilize the attacks outlined in this
paper, an attacker must first gain access to a host system
where the target application is running.

1.9 Software Utilized

All versions of the proof of concept application were
compiled to utilize version 4.7.2 of the .NET Framework
and execute on the x64 CPU architecture. All applications
were developed using Microsoft Visual Studio Community
Edition 2019. All experiments were performed on a Windows
10 virtual machine with 8GB RAM with access to two
physical cores of an Intel® CoreTM i7-4810MQ 2.80GHz
CPU (Quad Core). The virtualisation software utilized was
Oracle VirtualBox. All memory dump files were created and
analyzed using the 64-bit version of WinDBG.

2. Method

This section presents the steps performed by the author
using WinDBG when capturing memory dumps of the
proof-of-concept application, as well as the steps taken
by the author to extract cryptographic keys from the
associated memory dumps.

2.1 Creating Memory Dumps

For the purpose of this paper, the author created the
memory dumps utilized using WinDBG2. The authors
reason for doing so is based on the fact that proof-of-
concept application is a Console Application that requires
no user input; as such, the application executes in a
split-second, making it nigh on impossible to create a
memory dump using the Task Manager (if the author
were to require some form of user input and/or insert an
instruction to sleep the application thread in to the source
code, this approach would in fact be possible).

In order to capture a memory dump using WinDBG,
File → Open Executable must be chosen and the EXE
File produced when compiling the source code in Figure
1 must be selected. Following this, Debug → Go must be
chosen in order to run the application. At this point, the
command to create a memory dump in WinDBG must
be executed (.dump - see Figure 3). Having successfully
created the memory dump, Debug → Stop Debugging

must then be selected.

Figure 3. dump /ma Command in Use in WinDBG

2.2 Opening Memory Dumps in WinDBG

Memory Dumps can be opened in WinDBG by
selecting File → Open Crash Dump.

As the application associated with the memory dump
utilizes the .NET Framework (version 4 or above), both
SOS.DLL and CLR.DLL must be loaded into WinDBG
in order to enable the functionality discussed previously.
This is done by executing the following command:
.loadby sos clr.

2.3 Attack Method #1 - Viewing String Objects

The set of all String Objects contained within the memory
dump can be viewed by executing the !dumpheap -strings
command in WinDBG. Where the number of String Objects
in the memory dump is large, this can be filtered based on their
size using the following command: !dumpheap -strings -min
35 -max 37. See Figure 4 for sample output of this command
[22]. Note that the command utilized shows only those String
Objects with exactly eight characters; recall that eight-
character String Objects are being sought as the DES key
generated by the proof-of-concept application exist in this
form. Eight character String Objects occupy exactly 36 bytes
of memory in the.NET Framework; hence the use of the
values 35 and 37 in the command specified, i.e. greater
than 35; less than 37.

Figure 4. Sample Output Of !dumpheap -strings -min 35
-max 37 Command in WinDBG

https://doi.org/10.30564/ssid.v3i2.3347

2 In Windows Vista - as well as in subsequent releases of Microsoft
Windows - it is in fact possible to create a memory dump of any running
application/service using the Task Manager (by right clicking the name
of the application/service in the Task Manager and selecting Create
Dump File from the resulting menu), as well as the Command Line [23].

6

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

2.4 Attack Method #2 -Viewing DESCryptoSe-
rviceProvider Objects

In order to view instances of the DESCryptoS-ervice-
Provider Class in WinDBG (or any other Class instances
for that matter - other than String Objects) - the Method
Table address associated with the Class is required. The
Method Table address can be obtained using the !dumpheap
-stat command discussed previously in Section 1.6.
Figure 5 shows sample output of this command for the
DESCryptoServiceProvider Class - note the Method Table
address for the Class in the left column.

Figure 5. Sample Output of !dumpheap -stat Command In
WinDBG (for DESCryptoServiceProvider Object).

The command for obtaining the list of all instances of
a Class is: !dumpheap -mt method-table-address. Figure 6
shows sample output for this command where the associated
Objects are instances of the DESCryptoServiceProvider
Class - where method-table-address has a value of 7931aa44
(as shown previously in Figure 5). Note that the left
column contains the unique address of each instance of
the Class.

Given the address of each instance of the DESCrypt-
oServiceProvider Class, the internal attributes and values of
each instance can be viewed using the !do object-address
Command. Figure 7 shows sample command output of this
command for the first DESCryptoServiceProvider instance
listed previously in Figure 6 - where object-address has a

value of 01312dbc).
Within the DESCryptoServiceProvider Class, the

attributes of most interest are KeyValue and IVValue. As
both attributes are Arrays, their contents must be viewed
using the !da -details address-of-array command. Figure 8
shows sample output for the associated command where
the Byte Array shown is the KeyValue Byte Array denoted
previously in Figure 7 - where address-of-array has a
value of 01312ef4) [22].

2.5 Attack Method #3 - Byte Arrays

The steps involved in retrieving Byte Arrays from
memory dumps are similar to those shown previously in
Section 2.4, with the exception that the name of the target
Class is System.Byte[]. The list of all Byte Arrays can be
obtained using the !dumpheap -mt command, whilst the
values contained within each Byte Array can be obtained
using the !da -details command. Note that eight element
Byte Array Objects occupy exactly 20 bytes of memory in
the.NET Framework.

3. Results and Discussion

This section presents the results of carrying out the
steps outlined in the Method section on Versions A, B and
C of the proof-of-concept application.

3.1 String Objects Recovered

When viewing the set of all eight-character String

Figure 6. Sample Output Of !dumpheap -mt Command in WinDBG (for DESCryptoServiceProvider Objects).

Figure 7. Sample Output Of !do Command in WinDBG (for DESCryptoServiceProvider Object)

https://doi.org/10.30564/ssid.v3i2.3347

7

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

Objects contained within the memory dump associated
with Version A of the proof-of-concept application (66 in
total), it was notable that many of the String Objects were
either dictionary words or IP addresses. One String value
did stand out for its apparent random value (see String
value highlighted in Figure 9).

Figure 9. String Value Extracted From Memory Dump for
Version A (Note Pseudorandom Value Highlighted)

In relation to the memory dump associated with Version
B of the proof-of-concept application, carrying out the
same steps resulted in an identical set of String Objects
being returned as with Version A with the exception
that the apparently random String mentioned previously
was now empty, i.e. “”; therefore suggesting that the
ZeroMemory() Method is in fact effective at removing the
cryptographic key from memory (at least in String form).

In relation to Version C of the proof-of-concept appli-
cation, a total of 55 eight-character String Objects were
recovered from the associated memory dump (as opposed to
66 in the case of Version A and B).

Using the apparently random String value recovered
from Version A of the application, the author was able
to successfully decrypt the contents of the associated
‘Encrypted.TXT’ file. It was not possible to decrypt those

versions of ‘Encrypted.TXT’ associated with Version B
or C using any of the String values extracted from the
respective memory dumps.

3.2 DESCryptoServiceProvider Objects Recov-
ered

When analysing the memory dump for Version A of
the proof-of-concept application, three instance of the
DESCryptoServiceProvider Class were contained in the
memory dump.

When examining the contents of the KeyValue attribute
for each DESCryptoServiceProvider instance, the values
shown in Table 1 were obtained.

Table 1. Values Extracted From KeyValue Attribute of
DESCryptoServiceProvider Instances In Memory Dump

For Version A

Version A
Array Index Instance #1 Instance #2 Instance #3

0 76 76 76
1 234 63 63
2 247 63 63
3 32 32 32
4 198 63 63
5 154 63 63
6 134 63 63
7 103 103 103

As per Table 1, the values located at Array Index 0,
3 and 7 match in all three instances while the values at
the remaining Indexes do not (instance #2 and #3 do in

Figure 8. Sample Output Of !do -details Command in WinDBG (for Byte Array Object)

https://doi.org/10.30564/ssid.v3i2.3347

8

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

fact match; however instance #1 does not match either
instance #2 or instance #3). This discrepancy is a result of
converting the randomly generated Byte Array to a String
Object within the GenerateKey() Method. This conversion
is performed using the ASCIIEncoding.ASCII.GetString()
Method. Byte values between 128 and 255 are rendered
as a question mark in the String Objects produced by this
Method - and when converted back to a Byte Array, each
question mark character is rendered as 63, i.e. the ASCII
decimal value for a question mark. As such, it would
appear that instance #1 denotes the Byte Array originally
generated by the GenerateKey() Method, whilst instance
#2 and #3 denote the cryptographic key values utilized in
the EncryptFile() and DecryptFile() Methods.

Given the String value obtained previously in Section
3.1 when analyzing Version A (see Figure 9), it is apparent
that this String value was derived from the Byte Arrays
shown in instance #2 and #3 in Table 1 (see ASCII
Conversion table with pertinent values in Table 2).

Table 2. ASCII Conversion Table for Values Obtained in
Version A

ASCII Code Character
32 Space
63 ?
76 L
103 G

When analyzing the memory dump for Version B of
the proof-of-concept application, three instance of the
DESCryptoServiceProvider Class were contained in the
memory dump. The contents of each KeyValue Byte
Array recovered can be seen in Table 3.

Table 3. Values Extracted From KeyValue Attribute of
DESCryptoServiceProvider Instances In Memory Dump

For Version B

Version B
Array Index Instance #1 Instance #2 Instance #3

0 56 56 56
1 75 75 75
2 8 8 8
3 84 84 84
4 234 63 63
5 66 66 66
6 45 45 45
7 223 63 63

Using the KeyValue Byte Array values recovered, the
author was able to successfully decrypt the contents of
‘Encrpyted.TXT’ produced by Version A and Version B of
the proof-of-concept application. In relation to Version B,
it is clear that the ZeroMemory() Method is only effective
in removing the cryptographic key from main memory
where it exists in String form - with the cryptographic key

remaining in main memory in Byte Array form.
In relation to Version C of the proof-of-concept application,

no instances of the DESCryptoServiceProvider Class could be
located in the associated memory dumps; as such, it was not
possible to recover the cryptographic key or decrypt any data
using the approach outlined in this section.

3.3 Byte Array Objects Recovered

When analyzing the memory dump for Version A of
the proof-of-concept application, a total of 41 eight-element
Byte Arrays were located. Of these 41 - only seven distinct
values were noted:

• 30 of the Byte Arrays recovered contained the crypt-
ographic key retrieved previously in Section 3.2; six in the
form of the ‘original key’, i.e. prior to being converted to
a String Object in the GenerateKey() Method, and twenty-
four in the form actually utilized by the application. Note
that the same value was used for both the KeyValue and
IVValue attributes.

• Another three Byte Arrays contained matching values;
however the values in question were not associated with
either the KeyValue or IVValue attribute values utilized.

• Four of the Byte Arrays contained the value zero at
every Index.

• Three of the Byte Arrays contained completely unique
values that did not occur in any of the other 38 instances.

When analyzing Version B of the application, the exact
same statistics outlined above for Version A were also
noted.

For both Version A and B of the proof-of-concept
application, the author was able to successfully decrypt
the contents of ‘Encrypted.TXT’ using the Byte Array
values recovered.

In relation to Version C, 13 instances of the Byte Array
Class were recovered from the associated memory dump;
however, the author was unsuccessful in decrypting
the associated data using any of the Byte Array values
recovered.

4. Conclusions

As the results of the paper show, the author was able to
retrieve the cryptographic keys associated with Version A
and Version B of the proof-of-concept application. Whilst
the author expected to retrieve the cryptographic key
associated with Version A of the application - given that
no effort was made to manually remove the cryptographic
key from memory, the same was not expected of Version
B (given that steps were taken to remove same from
memory - albeit ineffectively). In response to these
findings, the author developed Version C of the proof-of-

https://doi.org/10.30564/ssid.v3i2.3347

9

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

concept application which proved secure against all three
attack Methods outlined in this paper.

The use of the ZeroMemory() Method in Version B of
the proof-of-concept was shown to be ineffective given
that the cryptographic key remained in memory in the
form of a Byte Array - the String version was removed
however. Given that the .NET Framework is a managed
code environment, the author believes it should be a
logical decision to utilize the standard garbage collection
mechanism for managed code - as is the case with Version
C - as opposed to the RtlZeroMemory function contained
within the KERNEL32.DLL (Version B).

The use of pre-written Classes is commonplace amongst
developers utilizing the .NET Framework. The inner
workings of such classes are typically abstracted from
software developers with a view to increasing developer
productivity. Given this abstraction, developers should
avoid manually managing the memory for such Classes.
This is perhaps best demonstrated by the fact that five
Byte Arrays are manually created in the source code of
the proof-of-concept application; however 30 Byte Arrays
were found in the memory dumps for both Version A
and Version B (evidently, these other Byte Arrays were
created by the pre-written Classes utilized by the proof-
of-concept application). Version C’s use of the standard
Garbage Collection Method for the .NET Framework
(System.GC.Collect()) demonstrates best practice as all
cryptographic keys and IVs were successfully removed
from main memory immediately after being used (doing
so protects against all three attack Methods utilized).
Version C also demonstrates the importance of explicitly
requesting that sensitive data be removed from memory
in managed code environments, i.e. manually executing
the Garbage Collection function, as opposed to waiting/
hoping for sensitive data to be cleared automatically
by the underlying application virtual machine (as is
the case with Version A - note that this usually only
occurs whenever the amount of memory available to the
application virtual machine (CLR) is deemed low) [21].

The extent to which the vulnerable source code
discussed in this paper has been utilized in publically
available software applications cannot be determined
given the closed nature of executable files; nonetheless,
the associated programming tutorial was hosted on the
Microsoft MSDN website for some twelve years3. A search

of publically available source code repositories conducted
in June 2021 using searchcode.com located four projects
that have copied and pasted the ZeroMemory() Method
verbatim, as well as a further three projects that utilize the
ASCIIEncoding.ASCII.GetString() Method to insecurely
encode DES cryptographic keys from Byte Array form
to String form. Access to a source code search engine
with support for fuzzy search or regular expression based
search would aid in the identification of further affected
applications.

In terms of the attack Methods demonstrated, the
author acknowledges that the reader may deem the attacks
using String Objects and DESCryptoServiceProvider
Objects as being specific to the proof-of-concept application
- given that the author had access to the associated source
code however, the use of String Objects for storing
cryptographic keys is a common occurrence in the authors
experience. In relation to the attack utilizing Byte Arrays,
it should be noted that Byte Arrays are used extensively
within the various cryptographic libraries of the .NET
Framework for storing cryptographic keys and IVs [9];
as such, the author considers this attack to be the most
widely applicable and easily transferable for attacking
other ciphers.

While this paper focuses on the first-generation DESC-
ryptoServiceProvider implementation (given its inclusion
in the programming tutorial that motivated this paper),
the author also repeated these experiments on the second
and third generation cipher implementations of the .NET
Framework. In the case of the second-generation of ciphers
supported by the .NET Framework, e.g. AesManaged, it
appears that steps are taken to remove cryptographic keys
from memory once the encryption or decryption operation
has completed - in a manner that is similar to the mechanism
utilized in Version B of the proof-of-concept application.
Whilst this successfully defends against the second attack
method outlined in this paper, attack method three still
succeeds. Curiously, the most recent generation of ciphers
supported by the .NET Framework does not appear to
take such steps - resulting in the associated ciphers being
susceptible to attack methods two and three.

The proof-of-concept application is a text-book example
of the incorrect usage of cryptography at the source code
level - an all too common occurrence in modern software
applications [24]. The source code shows the incorrect usage
of IVs as both the IV and symmetric key are assigned
the same value. In addition, the decision to convert Byte
Arrays to String Objects within the GenerateKey() Method
inadvertently reduces the size of the cipher keyspace and

https://doi.org/10.30564/ssid.v3i2.3347

3 The programming tutorial upon which the proof-of-concept application
was based was available on the Microsoft MSDN website between 2005
and 2017. Despite the various issues outlined in this paper (as well as
in other media [22], [23]), the tutorial was reviewed and re-approved on a
number of occasions.

10

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

also increases the prevalence of a specific value, i.e. 63,
appearing in keys and IVs generated by the application4.
Evidently, software developers must exercise caution
when utilizing ciphers in order to ensure they are utilized
securely with a view to preventing the vulnerabilities and
attacks outlined. In addition to this, authors and publishers
of programming tutorials should also take steps to ensure
same.

In terms of further research, the author hopes to ext-
end this research at a later date to target the .NET Core
Framework - a version of the .NET Framework that includes
cross-platform support for the Windows, Linux and macOS
platforms [25] - which has been increasing in popularity in
recent years.

References

[1] D. Kleiman et al., “Windows and Linux Forensics,”
in The Official CHFI Study Guide (Exam 312-49),
Syngress, 2007, pp. 287-349.

[2] J. M. Porup, “What is Mimikatz? And how this password-
stealing tool works,” 2019. [Online]. Available: https://
www.csoonline.com/article/3353416/what-is-mimikatz-
and-how-to-defend-against-this-password-stealing-tool.
html. [Accessed: 05-Jun-2021].

[3] J. Fruhlinger, “Petya ransomware and NotPetya
malware: What you need to know now,” 2017. [Online].
Available: https://www.csoonline.com/article/3233210/
petya-ransomware-and-notpetya-malware-what-you-
need-to-know-now.html. [Accessed: 09-Jun-2021].

[4] S. Ragan, “BadRabbit ransomware attacks multiple

media outlets,” 2017. [Online]. Available: https://
www.csoonline.com/article/3234691/badrabbit-
ransomware-attacks-multiple-media-outlets.html.
[Accessed: 09-Jun-2021].

[5] G. Keizer, “Hackers spied on 300,000 Iranians using
fake Google certificate,” 2011. [Online]. Available:
https://www.computerworld.com/article/2510951/
hackers-spied-on-300-000-iranians-using-fake-
google-certificate.html. [Accessed: 09-Jun-2021].

[6] Independent Security Evaluators (ISE), “Password
Managers: Under the Hood of Secrets Management,”
2019. [Online]. Available: https://www.securitye-
valuators.com/casestudies/password-manager-hacking/.
[Accessed: 05-Jun-2021].

[7] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum,
“Shredding Your Garbage: Reducing Data Lifetime
Through Secure Deallocation,” in USENIX Security
Symposium, 2005.

[8] Microsoft, “Introduction to the C# Language and
the .NET Framework | Microsoft Docs.” [Online].
Available: https://docs.microsoft.com/en-us/dotnet/
csharp/getting-started/introduction-to-the-csharp-
language-and-the-net-framework. [Accessed: 31-
May-2021].

[9] Microsoft, “System.Security.Cryptography Namespace.”
[Online]. Available: https://msdn.microsoft.com/en-us/
library/system.security.cryptography(v=vs.110).aspx.
[Accessed: 31-May-2021].

[10] Microsoft, “Getting Started with WinDbg (User-
Mode) | Microsoft Docs.” [Online]. Available: https://
docs.microsoft.com/en-us/windows-hardware/drivers/
debugger/getting-started-with-windbg. [Accessed: 31-
May-2021].

[11] Microsoft, “extern modifier - C# Reference,” 2015.
[Online]. Available: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/keywords/extern.
[Accessed: 05-Jun-2021].

[12] A. Shamir and N. van Someren, “Playing ‘Hide and
Seek’ with Stored Keys,” in International Conference
on Financial Cryptography, 1999, pp. 118-124.

[13] T. Klein, “All your private keys are belong to us
Extracting RSA private keys and certificates out of
the process memory,” 2006.

[14] B. Taubmann, O. Alabduljaleel, and H. P. Reiser,
“DroidKex: Fast extraction of ephemeral TLS keys
from the memory of Android apps,” Digit. Investig.,
vol. 26, pp. S67-S76, Jul. 2018.

[15] J. A. Halderman et al., “Lest We Remember: Cold
Boot Attacks on Encryption Keys,” Commun. ACM,
vol. 52, no. 5, p. 91, May 2009.

[16] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin, “Cold
Boot Attacks are Still Hot: Security Analysis of

https://doi.org/10.30564/ssid.v3i2.3347

4 As outlined in Section 3.2, the conversion of Byte Arrays to String
Objects in the GenerateKey() Method results in the apparent absence
of Byte values above 127 in the cryptographic keys generated and
utilised by the proof-of-concept application. Instead, all values in this
range were rendered as 63. This is a result of using the ASCIIEncoding.
ASCII.GetString() Method to create a String Object from a Byte Array.
Byte values between 127 and 255 are rendered as a question mark in
the String Objects produced by this Method and when converted back
to a Byte Array, each question mark character is rendered as 63 in the
resulting Byte, i.e. the ASCII decimal value for a question mark. Given
that cryptographic keys are represented as Byte Arrays in the .NET
Framework, this issue results in the most significant bit of each Byte
being rendered as zero therefore reducing the effective keyspace of a
ciphers by 2(Keyspace Of Cipher In Bits/8). Evidently, this is a serious security issue.
Ironically, this issue does not affect the DES cipher as the effective
keyspace of DES is 256 bits (DES keys are represented as eight-element
Byte Arrays in the .NET Framework with the most significant bit in each
Byte being ignored, i.e. a total of 64 Bits are utilised, but only 56 are
relevant); however other ciphers such as AES would be affected by this
issue.

From a key generation perspective, the GenerateKey() Method is
extremely insecure as there is a 50% chance that a randomly generated Byte
will have a specific value, i.e. 63 -therefore further reducing the effective
keyspace of all ciphers. In the case of the cryptographic key recovered
for Version A of the application, the Byte value 63 occurred five times in
a sequence of eight values, whilst 63 occurs twice in the cryptographic
key recovered for Version B of the application.

11

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

Memory Scramblers in Modern Processors,” in 2017
IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 313-324.

[17] R. Zahno, “Key Recovery from Decayed Memory
Images and Obfuscation of Cryptographic Algorithms,”
Concordia University, 2012.

[18] Microsoft, .“NET Framework Cryptography Model,”
2017. [Online]. Available: https://docs.microsoft.
com/en-us/dotnet/standard/security/cryptography-
model. [Accessed: 05-Jun-2021].

[19] Microsoft, “GCHandle Structure (System.Runtime.
InteropServices),” 2018. [Online]. Available: https://
docs.microsoft.com/en-us/dotnet/api/system.runtime.
interopservices.gchandle?redirectedfrom=MSDN&vi
ew=netframework-4.7.2. [Accessed: 31-May-2021].

[20] Microsoft, “RtlZeroMemory macro (wdm.h),” 2018.
[Online]. Available: https://docs.microsoft.com/en-
us/windows-hardware/drivers/ddi/content/wdm/nf-
wdm-RtlZeroMemory. [Accessed: 05-Jun-2021].

[21] Microsoft, “Fundamentals of Garbage Collection
| Microsoft Docs.” [Online]. Available: https://
docs.microsoft.com/en-us/dotnet/standard/garbage-
collection/fundamentals. [Accessed: 31-May-2021].

[22] Microsoft, “SOS.dll (SOS Debugging Extension),”
2017. [Online]. Available: https://docs.microsoft.
com/en-us/dotnet/framework/tools/sos-dll-sos-
debugging-extension. [Accessed: 31-May-2021].

[23] Microsoft, “How to create a user-mode process dump
file in Windows,” 2017. [Online]. Available: https://
support.microsoft.com/en-us/help/931673/how-to-
create-a-user-mode-process-dump-file-in-windows.
[Accessed: 31-May-2021].

https://doi.org/10.30564/ssid.v3i2.3347

[24] OWASP, “Insecure Cryptographic Storage,” 2010.
[Online]. Available: https://www.owasp.org/index.
php/Top_10_2010-A7-Insecure_Cryptographic_
Storage. [Accessed: 05-Jun-2021].

[25] Microsoft, .“NET.” [Online]. Available: https://www.
microsoft.com/net. [Accessed: 31-May-2021].

[26] Ponemon Institute LLC, “HSM Global Market
Study,” 2014.

[27] Microsoft, “How to encrypt and decrypt a file using
Visual C#,” 2005. [Online]. Available: https://www.
dropbox.com/s/gg2dpvkl9e00qyx/03 Application
Source Code Explained.pdf?dl=0. [Accessed: 31-
May-2021].

[28] Microsoft, “How to encrypt and decrypt a file using
Visual C#,” 2012. [Online]. Available: https://web.
archive.org/web/20170113084447/https://support.
microsoft.com/en-us/kb/307010. [Accessed: 31-May-
2021].

[29] R. Parks, “Dear Microsoft, This is How You Encrypt
a File,” 2017. [Online]. Available: https://hackernoon.
com/dear-microsoft-this-is-how-you-encrypt-a-file-
779cc0a19bfc. [Accessed: 31-May-2021].

[30] R. Parks, “How Not to Encrypt a File — Courtesy
of Microsoft,” 2017. [Online]. Available: https://
medium.com/@bob_parks1/how-not-to-encrypt-a-
file-courtesy-of-microsoft-bfadf2b0273d. [Accessed:
31-May-2021].

[31] Microsoft, “Debugging Managed Code Using the
Windows Debugger,” 2017. [Online]. Available:
https://docs.microsoft.com/en-us/windows-hardware/
drivers/debugger/debugging-managed-code.
[Accessed: 31-May-2021].

	_GoBack

