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In the absence of specialized encryption hardware, cryptographic operations 
must be performed in main memory. As such, it is common place for cyber 
criminals to examine the content of main memory with a view to retrieving 
high-value data in plaintext form and/or the associated decryption key. In 
this paper, the author presents a number of simple methods for identifying 
and extracting cryptographic keys from memory dumps of software 
applications that utilize the Microsoft .NET Framework, as well as source-
code level countermeasures to protect against same. Given the EXE file of 
an application and a basic knowledge of the cryptographic libraries utilized 
in the .NET Framework, the author shows how to create a memory dump 
of a running application and how to extract cryptographic keys from same 
using WinDBG - without any prior knowledge of the cryptographic key 
utilized. Whilst the proof-of-concept application utilized as part of this 
paper uses an implementation of the DES cipher, it should be noted that the 
steps shown can be utilized against all three generations of symmetric and 
asymmetric ciphers supported within the .NET Framework.
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1. Introduction

A memory dump is generated when the contents of 
computers’ main memory and CPU registers - at a specific 
moment in time - are written to file.

Memory dumps are auto-generated by modern opera-
ting system whenever a fault occurs during the execution 
of the operating system itself or any processes it is exec-
uting. In addition, it is also possible for computer users 
to manually generate a memory dump for a given process 
while the system is running. While traditionally utilized 
by software developers for diagnostic purposes, memory 
dumps have also been utilized by cybercriminals to gain 
access to sensitive data that is resident in main memory [1]. 

A number of recent cyber-attacks have utilized memory 
dumps to gain access to user passwords and authentication 
tokens [2-5]. In addition, a number of high-profile password 
management applications have recently been found to 
contain numerous memory hygiene vulnerabilities that can 
easily be exploited using memory dumps to gain access to 
user password information [6].

In order to protect sensitive data in main memory, 
software developers must exercise good memory hygiene. In 
essence, sensitive data must only reside in main memory for 
the duration of time that it is required and must be expunged 
once no longer required for further processing [7].

In this paper, the author presents a simple approach to 
extract cryptographic keys from memory dumps of software 
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applications that utilize the Microsoft .NET Framework 
[8], as well as countermeasures to protect against and 
prevent same. Given the EXE file of an application and 
a basic knowledge of the cryptographic libraries utilized in 
the .NET Framework [9], the author shows how to create a 
memory dump of the running application and how to extract 
cryptographic keys from same using WinDBG [10] without 
any prior knowledge of the cryptographic key utilized. 

The attack is shown in three scenarios - one where no 
steps have been taken to prevent cryptographic keys from 
being extracted from memory dumps, and one where 
steps have been taken to remove cryptographic keys from 
memory, albeit, ineffectively. Finally, the necessary steps 
to defend against same are demonstrated at the source 
code level.

1.1 Motivation 

The author was motivated to carry out this research after 
encountering a programming tutorial on the Microsoft 
MSDN website outlining how to encrypt and decrypt the 
contents of a TXT file using the DES cipher (demonstrated 
using the C# programming language) [8,9]. A unique feature of 
the tutorial was the inclusion of a Method which claimed to 
remove a cryptographic key from main memory after it was 
utilized by the application. The Method in question was 
defined as an External Method [11] named ZeroMemory() 
- which was configured to execute the RtlZeroMemory 
function contained within KERNEL32.DLL (a DLL that is 
external to the .NET Framework - but which is associated 
with the Windows Operating System). 

The author is an experienced C#.NET developer and 
considered the use of this mechanism to be non-standard; 
as such, the author opted to research the effectiveness of 
this mechanism. 

1.2 Related Work

Identifying cryptographic keys in memory dumps were 
first considered by Shamir and van Someren [12]. In their 
seminal paper, the authors outline two approaches for 
identifying the presence of cryptographic keys in memory 
dumps: one for identifying the presence of symmetric 
and asymmetric keys based on data entropy and another 
for identifying private RSA keys based on mathematical 
properties.

Klein [13] showed how to extract RSA private keys and 
SSL certificates from memory dumps of Apache web serv-
ers running on the Microsoft Windows platform (using 
IDA Pro). Klein identifies the presence of same in memory 
utilizing a pattern matching mechanism based on the file 
format outlined in the PKCS #8 and x509 specifications. 

Taubmann et al. [14] utilizes a combination of both appro-
aches outlined previously to identify TLS session keys in me-
mory dumps of Android OS applications.

In addition to analyzing memory dumps produced on 
running systems, significant research has also focused 
on so called ‘cold-boot-attacks’ whereby a hard reset is 
performed on a running computer systems and the data 
remaining in RAM is dumped to file prior to rebooting [15-

17]; evidently, this approach requires physical access to the 
target system in comparison to the approaches outlined 
previously (which only require digital access). 

To the best of the author’s knowledge, this paper is the 
first to show how to identify and extract cryptographic 
keys from memory dumps associated with the .NET 
Framework.

1.3 The .NET Framework

The .NET Framework is a software framework 
developed by Microsoft that offers a large collection of 
pre-written Classes and functionality that greatly simplifies 
the process of developing software applications for the 
Microsoft Windows operating system. Programs written 
for the .NET Framework execute in an application virtual 
machine environment known as Common Language 
Runtime (CLR). The CLR provides many services to 
applications - including automated memory management/
garbage collection. The .NET Framework supports the 
execution of programs written in over 20 languages, the 
most popular being C# and VB. Since Windows XP SP1 
(released in 2002), the .NET Framework comes pre-
installed with all versions of Microsoft Windows [8].

1.4 Cryptography in the .NET Framework

The .NET Framework includes support for three 
generations of cipher implementations. Ciphers supported 
within the .NET Framework include DES, AES, 
TripleDES, RC2, Rijndael and RSA.

The first generation of ciphers is denoted by the 
suffix CryptoServiceProvider in the Class name, e.g. 
DESCryptoServiceProvider. The functionality of the first 
generation of ciphers is defined externally to the .NET 
Framework (within DLLs that are native to the Windows 
Operating System). 

The second generation of ciphers is denoted by the 
suffix Managed in the Class name, e.g. AESManaged. 
The associated library Classes are native to the .NET 
Framework and have been available since version 3.5 of 
the.NET Framework (November 2007).

The most recent generation of ciphers is denoted by 

https://doi.org/10.30564/ssid.v3i2.3347
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the suffix Cng1 in the Class name, e.g. AESCng. The 
associated library Classes are also native to the .NET 
Framework and have been available since version 4.6.2 of 
the.NET Framework (August 2016) [18].

Note that the proof-of-concept application utilized as 
part of this paper uses the DESCryptoServiceProvider 
implementation of the DES cipher; however the attacks 
shown are also effective against all other symmetric and 
asymmetric ciphers in the .NET Framework - across all 
three of the aforementioned generations. 

1.5 Proof-of-concept Application

The proof-of-concept application utilized (see Figure 
1) is derived from the previously mentioned programming 
tutorial on the Microsoft MSDN website [8,9]. The tutorial 
shows how to encipher and decipher the contents of a text 
file using a symmetric key that is randomly generated by 
the application at runtime. The tutorial also includes steps to 
remove the cryptographic key from main memory; however 
as shown in Section 3.2, these steps are ineffective as it is 
in fact possible to recover the cryptographic key from a 
memory dump produced whilst the application is running. 

The proof-of-concept application utilized in this paper 
comprises five Methods: GenerateKey(), EncryptFile(), 
DecryptFile(), ZeroMemory() and Main().

• The GenerateKey() Method randomly generates a 64-
bit symmetric key using the DESCryptoServiceProvider 
Class of the .NET Framework and returns the cryptographic 
key as an ASCII encoded eight-character String Object.

• The EncryptFile() Method reads the contents of a 
(plaintext) TXT file into main memory, encrypts the data, 
and then writes the encrypted data to a different TXT file. 
Note that the text files and cryptographic key to be utilized 
are specified as Method Parameters.

• The DecryptFile() Method reads the contents of a 
(encrypted) TXT file into main memory, decrypts the data, 
and then writes the decrypted data to a different TXT file. 
Again, the text files and cryptographic key to be utilized 
are specified as Method Parameters.

• The Main() Method utilizes each of the aforemen-
tioned Methods. The String value, i.e. the symmetric key, 
randomly generated by the GenerateKey() Method is 
assigned to a String variable and is first passed into the 
EncryptFile() Method to be used for encryption purposes. 
Following the completion of the EncryptFile() Method, 
the cryptographic key is then passed into the DecryptFile() 
Method. The EncryptFile() Method is configured to read 
plaintext data from ‘MyData.TXT’, and to write encrypted 
data to ‘Encrypted.TXT’; whilst the DecryptFile() Method 
is configured to read encrypted data from ‘Encrypted.
TXT’, and to write plaintext data to ‘Decrypted.TXT’. In 

addition to this, a GCHandle Object is also created in the 
Main() Method. The GCHandle Class is used to track the 
location of an Object in main memory (à la Pointers in 
the case of programming languages which require manual 
memory management) - in this case, the Object being 
the cryptographic key generated by the GenerateKey() 
Method. In turn, the GCHandle Object is passed into 
the ZeroMemory() Method (discussed next) in an effort 
to remove the associated cryptographic key from main 
memory [19].

• The ZeroMemory() Method is notable in that it’s 
functionality is implemented in the KERNEL32.DLL 
included as part of the Microsoft Windows operating system. 
The purpose of this Method is to replace all data located 
at a specific address in RAM with a sequence of zeros - in 
this case, the randomly generated symmetric key whose 
address is contained within the GCHandle Object mentioned 
previously. It should be noted that the name of this Method 
within the KERNEL32.DLL is actually RtlZeroMemory; 
however it has been assigned the name ZeroMemory() in the 
application source code. Is should also be noted that the 
KERNEL32.DLL is not a part of the .NET Framework [20].

Three versions of the proof-of-concept application 
were developed and analyzed as part of this research.

• Version A comprises the source code shown in Figure 
1, with the exception of line 47 and lines 50 - 52. Version 
A makes no attempt to remove the cryptographic key from 
memory (other than relying on the automatic execution of 
the Garbage Collector by the .NET Framework [21]).

• Version B comprises the source code shown in Figure 
1, with the exception of line 52. Version B attempts to 
manually remove the cryptographic key from memory 
through the use of the ZeroMemory() Method outlined 
previously. 

• Version C comprises the full source code shown in 
Figure 1. Version C successfully removes the cryptog-
raphic key from memory through the manual execution of 
the Garbage Collection routine. Version C was developed 
by the author to address the issues identified when analy-
zing Version A and Version B.

1.6 WinDBG

WinDBG is a multipurpose debugging tool produced 
by Microsoft for debugging a variety of software applic-
ations, including user applications, device drivers and the 
Windows operating system [10]. 

In relation to the goal of this paper, the major functio-
nality of interest is the ability to view all .NET Objects 
contained within the portion of main memory managed by 
the .NET Framework [22].

Figure 2 shows sample output of executing the !dum-

https://doi.org/10.30564/ssid.v3i2.3347



4

Semiconductor Science and Information Devices | Volume 03 | Issue 02 | October 2021

Distributed under creative commons license 4.0

pheap -stat command on a memory dump in WinDBG. The 
command provides a summarized list of the contents of the 
memory dump. The list comprises the set of all Classes with 
instances in main memory, the number of instances of the Class, 
the amount of space occupied by all instances of the Class , as 
well as the address of the Method Table (MT) for the Class - 
which contains the list of all instances of the Class as well as 
the address of each individual instance in memory.

Figure 2. Sample Output of !dumpheap -stat Command in 
WinDBG.

It should be noted that the information contained within 
memory dumps cannot be traced back to the variables/
references to which they are assigned at the source code 

level - as is the case with source-code level debugging.

1.7 Objects of Interest within Memory Dumps

Given the functionality of WinDBG outlined previously, 
instances of the following Classes are of interest in relation 
to retrieving cryptographic keys from memory captured 
from the proof-of-concept application: 

• String
• DESCryptoServiceProvider
• Byte Arrays, i.e. byte[]
The inclusion of the String Class is based on the 

fact that cryptographic keys and Initial Vectors (IVs) 
are stored using String Objects in the source code of 
the proof-of-concept application. The inclusion of the 
DESCryptoServiceProvider Class is based on the use of 
the Class for encrypting and decrypting the content of text 
files whilst the inclusion of the Byte Array Class is based 
on the author’s observation that all cryptographic libraries 

Figure 1. Source Code for Proof-of-Concept Application.

https://doi.org/10.30564/ssid.v3i2.3347
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of the .NET Framework utilize Byte Arrays for storing 
cryptographic keys and IVs [9].

1.8 Attack Model

Note that in order to utilize the attacks outlined in this 
paper, an attacker must first gain access to a host system 
where the target application is running.

1.9 Software Utilized

All versions of the proof of concept application were 
compiled to utilize version 4.7.2 of the .NET Framework 
and execute on the x64 CPU architecture. All applications 
were developed using Microsoft Visual Studio Community 
Edition 2019. All experiments were performed on a Windows 
10 virtual machine with 8GB RAM with access to two 
physical cores of an Intel® CoreTM i7-4810MQ 2.80GHz 
CPU (Quad Core). The virtualisation software utilized was 
Oracle VirtualBox. All memory dump files were created and 
analyzed using the 64-bit version of WinDBG.

2. Method

This section presents the steps performed by the author 
using WinDBG when capturing memory dumps of the 
proof-of-concept application, as well as the steps taken 
by the author to extract cryptographic keys from the 
associated memory dumps.

2.1 Creating Memory Dumps

For the purpose of this paper, the author created the 
memory dumps utilized using WinDBG2. The authors 
reason for doing so is based on the fact that proof-of-
concept application is a Console Application that requires 
no user input; as such, the application executes in a 
split-second, making it nigh on impossible to create a 
memory dump using the Task Manager (if the author 
were to require some form of user input and/or insert an 
instruction to sleep the application thread in to the source 
code, this approach would in fact be possible).

In order to capture a memory dump using WinDBG, 
File → Open Executable must be chosen and the EXE 
File produced when compiling the source code in Figure 
1 must be selected. Following this, Debug → Go must be 
chosen in order to run the application. At this point, the 
command to create a memory dump in WinDBG must 
be executed (.dump - see Figure 3). Having successfully 
created the memory dump, Debug → Stop Debugging 

must then be selected.

Figure 3. dump /ma Command in Use in WinDBG

2.2 Opening Memory Dumps in WinDBG

Memory Dumps can be opened in WinDBG by 
selecting File → Open Crash Dump.

As the application associated with the memory dump 
utilizes the .NET Framework (version 4 or above), both 
SOS.DLL and CLR.DLL must be loaded into WinDBG 
in order to enable the functionality discussed previously. 
This is done by executing the following command: 
.loadby sos clr. 

2.3 Attack Method #1 - Viewing String Objects

The set of all String Objects contained within the memory 
dump can be viewed by executing the !dumpheap -strings 
command in WinDBG. Where the number of String Objects 
in the memory dump is large, this can be filtered based on their 
size using the following command: !dumpheap -strings -min 
35 -max 37. See Figure 4 for sample output of this command 
[22]. Note that the command utilized shows only those String 
Objects with exactly eight characters; recall that eight-
character String Objects are being sought as the DES key 
generated by the proof-of-concept application exist in this 
form. Eight character String Objects occupy exactly 36 bytes 
of memory in the.NET Framework; hence the use of the 
values 35 and 37 in the command specified, i.e. greater 
than 35; less than 37.

Figure 4. Sample Output Of !dumpheap -strings -min 35 
-max 37 Command in WinDBG

https://doi.org/10.30564/ssid.v3i2.3347
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2.4 Attack Method #2 -Viewing DESCryptoSe-
rviceProvider Objects

In order to view instances of the DESCryptoS-ervice-
Provider Class in WinDBG (or any other Class instances 
for that matter - other than String Objects) - the Method 
Table address associated with the Class is required. The 
Method Table address can be obtained using the !dumpheap 
-stat command discussed previously in Section 1.6. 
Figure 5 shows sample output of this command for the 
DESCryptoServiceProvider Class - note the Method Table 
address for the Class in the left column.
 

Figure 5. Sample Output of !dumpheap -stat Command In 
WinDBG (for DESCryptoServiceProvider Object).

The command for obtaining the list of all instances of 
a Class is: !dumpheap -mt method-table-address. Figure 6 
shows sample output for this command where the associated 
Objects are instances of the DESCryptoServiceProvider 
Class - where method-table-address has a value of 7931aa44 
(as shown previously in Figure 5). Note that the left 
column contains the unique address of each instance of 
the Class.

Given the address of each instance of the DESCrypt-
oServiceProvider Class, the internal attributes and values of 
each instance can be viewed using the !do object-address 
Command. Figure 7 shows sample command output of this 
command for the first DESCryptoServiceProvider instance 
listed previously in Figure 6 - where object-address has a 

value of 01312dbc).
Within the DESCryptoServiceProvider Class, the 

attributes of most interest are KeyValue and IVValue. As 
both attributes are Arrays, their contents must be viewed 
using the !da -details address-of-array command. Figure 8 
shows sample output for the associated command where 
the Byte Array shown is the KeyValue Byte Array denoted 
previously in Figure 7 - where address-of-array has a 
value of 01312ef4) [22].

2.5 Attack Method #3 - Byte Arrays

The steps involved in retrieving Byte Arrays from 
memory dumps are similar to those shown previously in 
Section 2.4, with the exception that the name of the target 
Class is System.Byte[]. The list of all Byte Arrays can be 
obtained using the !dumpheap -mt command, whilst the 
values contained within each Byte Array can be obtained 
using the !da -details command. Note that eight element 
Byte Array Objects occupy exactly 20 bytes of memory in 
the.NET Framework.

3. Results and Discussion

This section presents the results of carrying out the 
steps outlined in the Method section on Versions A, B and 
C of the proof-of-concept application.

3.1 String Objects Recovered

When viewing the set of all eight-character String 

Figure 6. Sample Output Of !dumpheap -mt Command in WinDBG (for DESCryptoServiceProvider Objects).

Figure 7. Sample Output Of !do Command in WinDBG (for DESCryptoServiceProvider Object)

https://doi.org/10.30564/ssid.v3i2.3347
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Objects contained within the memory dump associated 
with Version A of the proof-of-concept application (66 in 
total), it was notable that many of the String Objects were 
either dictionary words or IP addresses. One String value 
did stand out for its apparent random value (see String 
value highlighted in Figure 9).

Figure 9. String Value Extracted From Memory Dump for 
Version A (Note Pseudorandom Value Highlighted)

In relation to the memory dump associated with Version 
B of the proof-of-concept application, carrying out the 
same steps resulted in an identical set of String Objects 
being returned as with Version A with the exception 
that the apparently random String mentioned previously 
was now empty, i.e. “”; therefore suggesting that the 
ZeroMemory() Method is in fact effective at removing the 
cryptographic key from memory (at least in String form).

In relation to Version C of the proof-of-concept appli-
cation, a total of 55 eight-character String Objects were 
recovered from the associated memory dump (as opposed to 
66 in the case of Version A and B).

Using the apparently random String value recovered 
from Version A of the application, the author was able 
to successfully decrypt the contents of the associated 
‘Encrypted.TXT’ file. It was not possible to decrypt those 

versions of ‘Encrypted.TXT’ associated with Version B 
or C using any of the String values extracted from the 
respective memory dumps.

3.2 DESCryptoServiceProvider Objects Recov-
ered

When analysing the memory dump for Version A of 
the proof-of-concept application, three instance of the 
DESCryptoServiceProvider Class were contained in the 
memory dump.

When examining the contents of the KeyValue attribute 
for each DESCryptoServiceProvider instance, the values 
shown in Table 1 were obtained.

Table 1. Values Extracted From KeyValue Attribute of 
DESCryptoServiceProvider Instances In Memory Dump 

For Version A

Version A
Array Index Instance #1 Instance #2 Instance #3

0 76 76 76
1 234 63 63
2 247 63 63
3 32 32 32
4 198 63 63
5 154 63 63
6 134 63 63
7 103 103 103

As per Table 1, the values located at Array Index 0, 
3 and 7 match in all three instances while the values at 
the remaining Indexes do not (instance #2 and #3 do in 

Figure 8. Sample Output Of !do -details Command in WinDBG (for Byte Array Object)

https://doi.org/10.30564/ssid.v3i2.3347
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fact match; however instance #1 does not match either 
instance #2 or instance #3). This discrepancy is a result of 
converting the randomly generated Byte Array to a String 
Object within the GenerateKey() Method. This conversion 
is performed using the ASCIIEncoding.ASCII.GetString() 
Method. Byte values between 128 and 255 are rendered 
as a question mark in the String Objects produced by this 
Method - and when converted back to a Byte Array, each 
question mark character is rendered as 63, i.e. the ASCII 
decimal value for a question mark. As such, it would 
appear that instance #1 denotes the Byte Array originally 
generated by the GenerateKey() Method, whilst instance 
#2 and #3 denote the cryptographic key values utilized in 
the EncryptFile() and DecryptFile() Methods.

Given the String value obtained previously in Section 
3.1 when analyzing Version A (see Figure 9), it is apparent 
that this String value was derived from the Byte Arrays 
shown in instance #2 and #3 in Table 1 (see ASCII 
Conversion table with pertinent values in Table 2). 

Table 2. ASCII Conversion Table for Values Obtained in 
Version A

ASCII Code Character
32 Space
63 ?
76 L
103 G

When analyzing the memory dump for Version B of 
the proof-of-concept application, three instance of the 
DESCryptoServiceProvider Class were contained in the 
memory dump. The contents of each KeyValue Byte 
Array recovered can be seen in Table 3. 

Table 3. Values Extracted From KeyValue Attribute of 
DESCryptoServiceProvider Instances In Memory Dump 

For Version B

Version B
Array Index Instance #1 Instance #2 Instance #3

0 56 56 56
1 75 75 75
2 8 8 8
3 84 84 84
4 234 63 63
5 66 66 66
6 45 45 45
7 223 63 63

Using the KeyValue Byte Array values recovered, the 
author was able to successfully decrypt the contents of 
‘Encrpyted.TXT’ produced by Version A and Version B of 
the proof-of-concept application. In relation to Version B, 
it is clear that the ZeroMemory() Method is only effective 
in removing the cryptographic key from main memory 
where it exists in String form - with the cryptographic key 

remaining in main memory in Byte Array form.
In relation to Version C of the proof-of-concept application, 

no instances of the DESCryptoServiceProvider Class could be 
located in the associated memory dumps; as such, it was not 
possible to recover the cryptographic key or decrypt any data 
using the approach outlined in this section.

3.3 Byte Array Objects Recovered

When analyzing the memory dump for Version A of 
the proof-of-concept application, a total of 41 eight-element 
Byte Arrays were located. Of these 41 - only seven distinct 
values were noted:

• 30 of the Byte Arrays recovered contained the crypt-
ographic key retrieved previously in Section 3.2; six in the 
form of the ‘original key’, i.e. prior to being converted to 
a String Object in the GenerateKey() Method, and twenty-
four in the form actually utilized by the application. Note 
that the same value was used for both the KeyValue and 
IVValue attributes.

• Another three Byte Arrays contained matching values; 
however the values in question were not associated with 
either the KeyValue or IVValue attribute values utilized.

• Four of the Byte Arrays contained the value zero at 
every Index.

• Three of the Byte Arrays contained completely unique 
values that did not occur in any of the other 38 instances.

When analyzing Version B of the application, the exact 
same statistics outlined above for Version A were also 
noted. 

For both Version A and B of the proof-of-concept 
application, the author was able to successfully decrypt 
the contents of ‘Encrypted.TXT’ using the Byte Array 
values recovered. 

In relation to Version C, 13 instances of the Byte Array 
Class were recovered from the associated memory dump; 
however, the author was unsuccessful in decrypting 
the associated data using any of the Byte Array values 
recovered.

4. Conclusions

As the results of the paper show, the author was able to 
retrieve the cryptographic keys associated with Version A 
and Version B of the proof-of-concept application. Whilst 
the author expected to retrieve the cryptographic key 
associated with Version A of the application - given that 
no effort was made to manually remove the cryptographic 
key from memory, the same was not expected of Version 
B (given that steps were taken to remove same from 
memory - albeit ineffectively). In response to these 
findings, the author developed Version C of the proof-of-

https://doi.org/10.30564/ssid.v3i2.3347
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concept application which proved secure against all three 
attack Methods outlined in this paper.

The use of the ZeroMemory() Method in Version B of 
the proof-of-concept was shown to be ineffective given 
that the cryptographic key remained in memory in the 
form of a Byte Array - the String version was removed 
however. Given that the .NET Framework is a managed 
code environment, the author believes it should be a 
logical decision to utilize the standard garbage collection 
mechanism for managed code - as is the case with Version 
C - as opposed to the RtlZeroMemory function contained 
within the KERNEL32.DLL (Version B). 

The use of pre-written Classes is commonplace amongst 
developers utilizing the .NET Framework. The inner 
workings of such classes are typically abstracted from 
software developers with a view to increasing developer 
productivity. Given this abstraction, developers should 
avoid manually managing the memory for such Classes. 
This is perhaps best demonstrated by the fact that five 
Byte Arrays are manually created in the source code of 
the proof-of-concept application; however 30 Byte Arrays 
were found in the memory dumps for both Version A 
and Version B (evidently, these other Byte Arrays were 
created by the pre-written Classes utilized by the proof-
of-concept application). Version C’s use of the standard 
Garbage Collection Method for the .NET Framework 
(System.GC.Collect()) demonstrates best practice as all 
cryptographic keys and IVs were successfully removed 
from main memory immediately after being used (doing 
so protects against all three attack Methods utilized). 
Version C also demonstrates the importance of explicitly 
requesting that sensitive data be removed from memory 
in managed code environments, i.e. manually executing 
the Garbage Collection function, as opposed to waiting/
hoping for sensitive data to be cleared automatically 
by the underlying application virtual machine (as is 
the case with Version A - note that this usually only 
occurs whenever the amount of memory available to the 
application virtual machine (CLR) is deemed low) [21]. 

The extent to which the vulnerable source code 
discussed in this paper has been utilized in publically 
available software applications cannot be determined 
given the closed nature of executable files; nonetheless, 
the associated programming tutorial was hosted on the 
Microsoft MSDN website for some twelve years3. A search 

of publically available source code repositories conducted 
in June 2021 using searchcode.com located four projects 
that have copied and pasted the ZeroMemory() Method 
verbatim, as well as a further three projects that utilize the 
ASCIIEncoding.ASCII.GetString() Method to insecurely 
encode DES cryptographic keys from Byte Array form 
to String form. Access to a source code search engine 
with support for fuzzy search or regular expression based 
search would aid in the identification of further affected 
applications.

In terms of the attack Methods demonstrated, the 
author acknowledges that the reader may deem the attacks 
using String Objects and DESCryptoServiceProvider 
Objects as being specific to the proof-of-concept application 
- given that the author had access to the associated source 
code however, the use of String Objects for storing 
cryptographic keys is a common occurrence in the authors 
experience. In relation to the attack utilizing Byte Arrays, 
it should be noted that Byte Arrays are used extensively 
within the various cryptographic libraries of the .NET 
Framework for storing cryptographic keys and IVs [9]; 
as such, the author considers this attack to be the most 
widely applicable and easily transferable for attacking 
other ciphers. 

While this paper focuses on the first-generation DESC-
ryptoServiceProvider implementation (given its inclusion 
in the programming tutorial that motivated this paper), 
the author also repeated these experiments on the second 
and third generation cipher implementations of the .NET 
Framework. In the case of the second-generation of ciphers 
supported by the .NET Framework, e.g. AesManaged, it 
appears that steps are taken to remove cryptographic keys 
from memory once the encryption or decryption operation 
has completed - in a manner that is similar to the mechanism 
utilized in Version B of the proof-of-concept application. 
Whilst this successfully defends against the second attack 
method outlined in this paper, attack method three still 
succeeds. Curiously, the most recent generation of ciphers 
supported by the .NET Framework does not appear to 
take such steps - resulting in the associated ciphers being 
susceptible to attack methods two and three.

The proof-of-concept application is a text-book example 
of the incorrect usage of cryptography at the source code 
level - an all too common occurrence in modern software 
applications [24]. The source code shows the incorrect usage 
of IVs as both the IV and symmetric key are assigned 
the same value. In addition, the decision to convert Byte 
Arrays to String Objects within the GenerateKey() Method 
inadvertently reduces the size of the cipher keyspace and 

https://doi.org/10.30564/ssid.v3i2.3347

3  The programming tutorial upon which the proof-of-concept application 
was based was available on the Microsoft MSDN website between 2005 
and 2017. Despite the various issues outlined in this paper (as well as 
in other media [22], [23]), the tutorial was reviewed and re-approved on a 
number of occasions.
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also increases the prevalence of a specific value, i.e. 63, 
appearing in keys and IVs generated by the application4. 
Evidently, software developers must exercise caution 
when utilizing ciphers in order to ensure they are utilized 
securely with a view to preventing the vulnerabilities and 
attacks outlined. In addition to this, authors and publishers 
of programming tutorials should also take steps to ensure 
same. 

In terms of further research, the author hopes to ext-
end this research at a later date to target the .NET Core 
Framework - a version of the .NET Framework that includes 
cross-platform support for the Windows, Linux and macOS 
platforms [25] - which has been increasing in popularity in 
recent years.
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