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ABSTRACT
Non-orthogonal multiple access (NOMA) represents the latest addition to the array of multiple access techniques, 

enabling simultaneous servicing of multiple users within a singular resource block in terms of time, frequency, 
and code. A typical NOMA configuration comprises a base station along with proximate and distant users. The 
proximity users experience more favorable channel conditions in contrast to distant users, resulting in a compromised 
performance for the latter due to the less favorable channel conditions. When cooperative communication is integrated 
with NOMA, the overall system performance, including spectral efficiency and capacity, is further elevated. This study 
introduces a cooperative NOMA setup in the downlink, involving three users, and employs dynamic power allocation 
(DPA). Within this framework, User 2 acts as a relay, functioning under the decode-and-forward protocol, forwarding 
signals to both User 1 and User 3. This arrangement aims to bolster the performance of the user positioned farthest 
from the base station, who is adversely affected by weaker channel conditions. Theoretical and simulation outcomes 
reveal enhancements within the system’s performance.
Keywords: NOMA; Cooperative NOMA; Decode and forward; Dynamic power allocation

1. Introduction
Future wireless communication requires high 

data rates, low latency, improved accuracy, enhanced 
quality of service, and more. These demands intro-
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duce challenges due to signal degradation caused 
by factors like random fades, diffraction, noise, and 
other performance-reducing phenomena [1]. Ad-
dressing these challenges necessitates technological 
advancements. The emerging 5G technique known 
as Non-Orthogonal Multiple Access (NOMA) offers 
superior performance in terms of boosting spectral 
efficiency compared to conventional multiple access 
methods. NOMA enables the support of multiple us-
ers within a single resource block, thereby enhancing 
both individual user and overall system throughput [2].  
In a typical NOMA setup, users communicate indi-
vidually with the base station, treating signals from 
other users as interference. Orthogonal Multiple Ac-
cess (OMA) frameworks struggle to accommodate 
high-speed communication applications and a grow-
ing user base. Consequently, the shift toward NOMA 
techniques for 5G is evident, as it outperforms OMA 
techniques across various parameters, including user 
fairness, throughput, and data rates [3]. Scientific re-
search confirms that the integration of Non-Orthog-
onal Multiple Access with recommended wireless 
technologies yields superior results [4], especially 
when incorporating features like antenna diversity, 
massive multiple-input multiple-output architecture, 
equitable data rates, energy efficiency, cooperative 
relaying, beamforming and equalization, network 
coding, and space-time coding [5].

This article primarily focuses on enhancing the 
performance of distant users within a Non-Orthogo-
nal Multiple Access (NOMA) system by introducing 
the concept of cooperative relay communication.

The exploration of cooperative relay networks has 
attracted significant research attention due to its po-
tential to enhance efficiency and system capacity [6].  
The fundamental principle of cooperative NOMA 
involves designating one of the NOMA users as a 
relay. To elaborate, the transmission process of coop-
erative NOMA unfolds in two distinct phases or time 
slots. During the initial phase, the Base Station (BS) 
disseminates superimposed messages to M NOMA 
users. In the subsequent phase, a user endowed with 
strong channel conditions (referred to as the strong 
user) assumes the role of a relay. This relay user em-

ploys Amplify-and-Forward (AF), Decode-and-For-
ward (DF), or a hybrid AF/DF approach to transmit 
the deciphered messages to a user possessing weaker 
channel conditions. This cooperative action enhances 
the reliability of the weaker user [7].

2. Literature review
Cooperative communications in conjunction with 

NOMA presents an additional avenue for augmenting 
user performance. Non-Orthogonal Multiple Access 
(NOMA) is an auspicious radio access approach for 
the upcoming generation of wireless networks. Re-
search on NOMA-based cooperative relay networks 
has been detailed in research by D. Wan, M. Wen, 
F. Ji et al. [8]. They initiate by introducing current re-
lay-assisted NOMA systems, categorizing them into 
uplink, downlink, and composite architectures. The 
principles and key characteristics of these systems 
are explored, followed by an extensive comparison 
encompassing aspects like spectral efficiency, energy 
efficiency, and total transmit power. A new approach 
termed hybrid power allocation is proposed for the 
composite architecture. This strategy reduces com-
putational complexity and signaling overhead while 
incurring a minor sum rate decline.

An innovative concept of Cooperative Commu-
nication has been researched to manage challenges 
like abundant channel access, intricate interference 
settings, varying networks, and energy-intensive 
environments. This concept, geared towards high 
signal coverage and capacity among mobile devices, 
hinges on resource allocation techniques for robust 
interference management, resource scheduling, and 
user matching. Several strategies addressing various 
technological facets of cooperative communication 
allocation techniques, including relay nodes, signal 
forwarding, and transceiver diversity gain, are inves-
tigated by W. Guo, N. M. F. Qureshi, I. F. Siddiqui, 
and D. R. Shin [9].

In a separate study, M. Ajmal and M. Zeeshan [1] 
introduce a novel hybrid cooperative communica-
tion method for multiuser power domain NOMA. 
This approach leverages amplify-and-forward (AF) 
and decode-and-forward (DF) techniques through a 



28

Semiconductor Science and Information Devices | Volume 05 | Issue 01 | April 2023

strong user acting as a relay for a weak user in a cel-
lular system. This exploits NOMA’s inherent feature 
that a strong user possesses prior knowledge of a 
weak user with poor channel conditions. Analysis of 
Bit Error Rate (BER) curves demonstrates that coop-
erative communication enhances the performance of 
weak users situated at the cellular system’s edge.

Another proposal presents a two-stage super-
posed transmission for the Cooperative Relay Net-
work (CRN) within a finite time slot framework of 
the NOMA system by W. Duan et al. [6]. The scheme 
employs Maximum Ratio Combining (MRC) and 
Successive Interference Cancellation (SIC) to jointly 
decode source and relay node receptions across mul-
tiple time slots, utilizing a superposition code for the 
relay node’s transmitted signal. The performance of 
this system is evaluated in terms of ergodic sum rate, 
outage probability, and outage capacity, substantiat-
ed by corresponding closed-form expressions. The 
scheme’s theoretical derivations align well with sim-
ulation results, exhibiting notably enhanced trans-
mission rates compared to TDMA and conventional 
NOMA schemes.

Additionally, a two-stage relay selection strategy 
for NOMA networks encompassing DF and AF re-
laying protocols has been introduced in research by 
Z. Yang, Z. Ding, and P. Fan [10]. The architecture in-
volves a base station communicating with two users 
through multiple relays. Lastly, a dual-hop coopera-
tive relaying scheme using NOMA has been explored 
by M. F. Kader, M. B. Shahab, and S. Y. Shin [11].  
This system enables two sources to communicate 
with their corresponding destinations in parallel over 
the same frequency band, facilitated by a shared re-
lay.

To our best understanding, the majority of in-
vestigations into cooperative NOMA have centered 
around fixed power allocation methodologies, ne-
glecting the dynamic aspect of power allocation that 
takes the channel’s condition into account. Inade-
quate power allocation could significantly impact the 
effectiveness of a cooperative network. Therefore, 
this study delves into the implications of dynamic 
power allocation on the operational efficiency of 

cooperative NOMA, particularly focusing on its po-
tential to enhance the system’s performance in terms 
of outage probability and system capacity. The key 
focal points of this research are as follows:

1) We propose and thoroughly explore the con-
cept of dynamic power allocation within a three-user 
cooperative NOMA configuration involving a relay 
that employs the Decode-and-Forward (DF) proto-
col.

2) To facilitate accurate comparison, we devise a 
cooperative network integrating reference Orthogo-
nal Multiple Access (NOMA) as a benchmark. The 
findings demonstrate that the proposed Cooperative 
NOMA (CNOMA) scheme surpasses the latter ap-
proach when perfect Successive Interference Cancel-
lation (SIC) is employed at the relay and at User 3.

3. System model
Figure 1 depicts a simplified scenario of a down-

link NOMA system involving three users, namely 
User 1 (U1), User 2 (U2), and User 3 (U3), along 
with a solitary base station (BS) situated within a 
single cell. In this illustration, U2 is designated as 
the robust user and simultaneously serves as a relay. 
It is worth noting that in reality we would have sev-
eral number of users as well as relays and the system 
model will always differ, but just for the sake of sim-
plicity we decided to use three users with one acting 
as a relay. In this research, we considered a downlink 
scenario where the base station communicates with 
multiple users that power allocation is being per-
formed at the base station and at the relay is essential 
to optimize the relays amplification and forwarding 
process. This configuration assumes ideal successive 
interference cancellation (SIC) receivers and em-
ploys Rayleigh fading for all signal links. The dia-
gram showcases the transmission of signals from the 
BS to U1 and subsequently through an intermediary 
U2 functioning as a relay. Each node in this setup is 
outfitted with a sole antenna, while the relay operates 
in a half-duplex mode utilizing the decode-forward 
strategy. 

The cooperative NOMA paradigm is governed by 
two distinct phases, namely the transmission phase 
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(Phase 1) and the cooperative phase (Phase 2) [7].

Figure 1. The three-user cooperative NOMA network.
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where, PA denotes the transmit power of the BS, α1 
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U1 treats symbol xR as noise when decoding x2 
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The achievable rates for each symbol are given as follows. For SIC, the relay should
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The achievable rates for each symbol are given as 
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When U3 succeeds in decoding x2, the achievable 
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Performance analysis
This part of the research paper explains ergodic 

capacity (EC) which is used as a performance metric 
in wireless communication systems to characterize 
the average achievable data rate of a communication 
link over a long period, considering the statistical 
variations of the channel conditions. 
Ergodic capacity (EC)

EC is a concept used in information theory and 
communication systems to quantify the average 
data rate that can be reliably transmitted between 
the transmitter and receiver under varying channel 
conditions. Ergodic capacity is calculated by taking 
the average of the capacity achieved over different 
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given SNR (γ).
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ing decode-forward and existing CNOMA with 
decode-forward. NOMA’s power allocation scheme 
plays a crucial role in the determination of results. 
In these results, dynamic power allocation has been 
considered and it can be seen that the system perfor-
mance shows an improvement in terms of ergodic 
system capacity. As the transmit SNR increases, 
the quality of the received signal improves, which 
leads to higher capacity which is dependent on the 
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Figure 2. Comparison of DF CNOMA and DF COMA.

5. Conclusions
We introduced a cooperative NOMA framework 

involving three users, where the user situated closer 
to the base station serves as a relay using the de-
code-and-forward relaying protocol. Additionally, 
we formulated a cooperative OMA setup utilizing 
the decode-and-forward protocol, serving as a refer-
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ence point for comparison. The outcomes of our in-
vestigation demonstrate that the decode-and-forward 
protocol, coupled with dynamic power allocation 
in NOMA, outperforms the decode-and-forward 
protocol in OMA. As a next step, our research aims 
to explore the potential of incorporating a hybrid 
amplify-and-forward/amplify-and-forward approach 
in more complex scenarios involving multiple par-
ticipants. Secondly, since wireless channels are often 
frequency selective we intend to consider it as well 
as frequency offset in our research in order to see 
how the performance will be. Finally, we will ana-
lyse the system performance considering bit error 
rate (BER) vs average signal to noise ratio (SNR) 
per bit of NOMA and OMA systems.
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