Life Stage, Gender and Movement of Blue Crabs (Callinectis sapidus) in Lake Mattamuskeet and Connecting Canals

Authors

  • Julia Chen Rinaldi Stantec, 265 Clinton St, Brooklyn, NY 11201
  • James Hench 135 Duke Marine Lab Road, MSC Nicholas School Duke University Beaufort, NC 2851 650-759-6639
  • M. Zachary Darnell Gulf Coast Research Lab 703 E. Beach Dr., Ocean Springs, MS 39564 Division of Coastal Sciences, School of Ocean Science and Engineering The University of Southern Mississippi 228-872-4298
  • Matthew Kukurugya Molecular and Cell Biology UC Berkley 635 Tennessee St.,   San Francisco, CA 94107 219-793-4375
  • Daniel Rittschof MSC, Nicholas School, Duke University 135 Duke Marine Lab Road Beaufort, NC 28516 252-504-7634

DOI:

https://doi.org/10.30564/jfsr.v1i2.1095

Abstract

In their ranges on east and south coasts of the Americas as well as their established invasions in the Adriatic and Baltic, blue crabs, Callinectis sapidus, inhabit estuaries, sounds and coastal oceans and are commercially and ecologically important. How crabs move in response to physical variables is important to management. We monitored life stages at canal control structures, assessed gender ratios with recreational crabbing, learned from crabbers, and studied movements of tagged crabs in a canal connecting Lake Mattamuskeet to the Pamlico sound.  Juveniles enter the lake  through two of 4 canals connecting to the sounds.  Females migrate out through one canal. The lake standing population is about 70% male.  Movements of 240 crabs in August 2012 and 102 crabs in October 2014 were quantified using RFID tags with co-located meteorological and oceanographic devices. Non-spawning females and males are nomadic.  Crabs released in the canal move in response to changes in water depth and go with the flow, toward the Pamlico Sound (summer 76% and fall 78%). What crabbers describe as a fall migration  appears to be concentration of crabs in warmer deeper canals and then southern movement with flow generated by strong north winds. To be effective, management strategies like migratory corridors require understanding of crab movements.

Keywords:

Crabs; Meteorology; Oceanography; Movement; Foraging; Migration; RFID Tagging; Life History

References

[1] Millikin MR & Williams AB. Synopsis of Biological Data on the Blue Crab, Callinectes sapidus Rathburn [R]. (D. O. Commerce, Trans.) NOAA Technical Report NMFS 1. Washington, DC, 1984: 47.

[2] Beqiraj S Kashta L. The establishment of blue crab Callinectessapidus Rathbun, 1896 in the Lagoon of Patok, Albania (south-east AdriaticSea)[J]. Aquatic Invasions, 2010, 5(2): 219-221.

[3] Stasolla G Innocenti G. New records of the invasive crabs Callinectes sapidus Rathbun, 1896 and Percnongibbesi (H. Milne Edwards,1853) along the Italian coasts[J]. BioInvasions Records, 2014, 3(1): 39–43

[4] Perdikaris C Konstantinidis E Gouva E Ergolavou A Klaoudatos D Pashos I. Occurrence of the Invasive Crab SpeciesCallinectes sapidus Rathbun, 1896 in NW Greece. Walailak[J]. J Sci & Tech, 2016; 13(7): 503-510

[5] Czerniejewski P Kasowska N Linowska A Rybczk A. A new record of the invasive blue crab(Callinectes sapidus Rathbun, 1896) and his parasite from the Baltic basin” (J) Oceanologia, 2019.

[6] https://urldefense.proofpoint.com/v2/url?u=https3A__doi.org_10.1016_&d=DwIBaQ&c=imBPVzF25OnBgGmVOlcsiEgHoG1i6YHLR0Sj_gZ4adc&r=rtKziWPyKnk_fieHagw&m=vnLwwuQtjnpO8w8ToK19D274FezdrZ5oajYV1E4DknM&s=BwBXJyPZn4nDe1yI2qx-wCzbcd9p5YjukboVQueMVG8&e= j.oceano. 2019.06.004

[7] Provenzano AJ McConaugha JR Phillips KB Johson DB Clark J. Vertical distribution of first stage larvae of the blue crab, Callinectes sapidus, at the mouth of Chesapeake Bay[J]. Est., Coast., Shelf., Sci., 1983, 16: 489-499

[8] https://doi.org/10.1016/0272-7714(83)90081-1

[9] Epifanio CE, Valenti CC, Pembroke AE. Dispersal and recruitment of blue crab larvae in Delaware Bay, USA[J]. Estuar Coast Shelf Sci, 1984, 18:1-12

[10] Forward RB Jr Rittschof D. Photoresponses of crab megalopae in offshore and estuarine waters: implications for transport[J]. J. Exp. Mar. Biol. Ecol. 1994, 182: 183-192.

[11] Forward RB. Jr Tankersley RA Blondel D Rittschof D[J]. Metamorphosis of the blue crab Callinectes sapidus: effects of humic acids and ammonium. Mar. Ecol. Prog. Ser. 1997, 157: 277-286.

[12] Welch JM Rittschof D Bullock TM Forward RB Jr. Effects of chemical cues on settlement behavior of blue crab (Callinectes sapidus) postlarvae[J]. Mar. Ecol. Prog. Ser. 1997, 1544: 143-153.

[13] Epifanio CE Garvine RW. Larval transport on the Atlantic continental shelf of North America: a review[J]. Estuar Coast Shelf Sci, 2001, 52:51-77

[14] Blackmon DC Eggleston D. Factors influencing planktonic, post-settlement dispersal of early juvenile blue crabs (Callinectes sapidus Rathbun)[J]. JEMBE, 2001, 257: 183-203

[15] Carr SD Tankersley RA Hench J L Forward Jr R B Luettich Jr RA. Movement patterns and trajectories of ovigerous blue crabs Callinectes sapidus during the spawning migration[J]. Estuarine Coastal and Shelf Science, 2004, 60 (4): 567-579

[16] Aguilar R Hines AH Wolcott TG Wolcott DL Kramer MA Lipcius RN. The timing and route of movement and migration of post-copulatory female blue crabs, Callinectes sapidus Rathbun, from the upper Chesapeake Bay[J]. J.E.M.B.E, 2005, 319: 117–128

[17] Ramach SM MZ Darnell NG Avissar Rittschof D. Habitat use and population dynamics of blue crabs, Callinectes sapidus, in a high-salinity embayment[J]. Journal of Shellfish Research, 2009, 28:635–640.

[18] Darnell MZ TG Wolcott Rittschof D. Environmental and endogenous control of selective tidal-stream transport behavior during blue crab Callinectes sapidus spawning migrations[J]. Marine Biology, 2012, 159: 621-631

[19] Hines AH Jivoff PR Bushmann PJ van Montfrans J Reed SA Wolcott DL and Wolcott T G, Evidence for sperm limitation in the blue crab, Callinectes sapidus[J]. Bull Mar Sci, 2003, 72(2): 287–310.

[20] Dickinson GH Rittschof D Latanich C. Spawning biology of the blue crab, Callinectes sapidus, in North Carolina[J]. Bull Mar Sci, 2006, 79: 273–285

[21] Darnell M Z Rittschof D Darnell K M McDowell RE. Lifetime reproductive potential of female blue crabs Callinectes sapidus in North Carolina, USA[J]. MEPS, 2009, 394: 153-163

[22] Van Engel WA. The blue crab and its fishery in Chesapeake Bay. Part 1 - Reproduction, early development, growth, and migration[J]. Commer Fish Rev, 1958, 20: 6-16

[23] Tankersley RA Wieber MG Sigala MA Kachurak KA, Migratory behavior of ovigerous blue crabs Callinectes sapidus: Evidence for selective tidal-stream transport[J]. Biol Bull, 1998, 195: 168–173

[24] Forward RB Cohen JH Darnell MZ Saal A. The circa-tidal rhythm in vertical swimming of female blue crabs, Callinectes sapidus, during their spawning migration: a reconsideration[J]. J. Shellfish. Res. 2005, 24: 587–590

[25] De Vries MC Tankersley RA Forward Jr RB Kirby-Smith WW Luettich Jr RA. Abundance of estuarine crab larvae is associated with tidal hydrological variables[J]. Mar. Biol. 1994, 118: 403–413

[26] Tankersley RA, McKelvey LM, Forward RB. Responses of estuarine crab megalopae to pressure, salinity and light - implications for flood tide transport.[J]. Mar Biol, 1995, 122: 391-400

[27] Welch JM Forward Jr RB Howd PA. Behavioral responses of blue crab Callinectes sapidus postlarvae to turbulence: implications for selective tidal stream transport[J]. MEPS, 1999, 179: 135–143.

[28] Turner HV Wolcott DL Wolcott TG Hines AH. Post-mating behavior, intramolt growth, and onset of migration to Chesapeake Bay spawning grounds by adult female blue crabs, Callinectes sapidus Rathbun[J]. J Exp Mar Biol Ecol, 2003, 295: 107-130

[29] Hench J L Forward Jr RB Carr S D Rittschof D Luettich RA. Testing a selective tidal-stream transport model: Observations of female blue crab (Callinectes sapidus) vertical migration during the spawning season[J]. Limnology and Oceanography, 2004, 49(5): 1857-1870

[30] Darnell MZ. Spawning biology of female blue crabs[D]. Ph D Thesis Duke University, 2009: 175

[31] Ogburn MB Habegger LC. Reproductive Status of Callinectes sapidus as an Indicator of Spawning Habitat in the South Atlantic Bight, USA[J]. Estuaries and Coasts, 2015, 38: 2059–2069.

[32] DOI: 10.1007/s12237-015-9962-2

[33] Hines AH Wolcott TG Gonzalez-Gurriaran E Gonzalez-Escalante JL, Friere J. Movement patterns and migrations in crabs: telemetry of juvenile and adult behaviour in Callinectes Sapidus and Maja squinado[J]. J. Mar. Biol. Ass. U.K., 1995, 75: 27-42

[34] Waters, M.N., Piehler, M.F., A. B. Rodriguez, Smoak, J. M. and T. S. Bianchi. Shallow lake trophic status linked to late Holocene climate and human impacts[J]. J. Paleolim, 2009, 42: 51-64.

[35] ISSN: 0921-2728 (Print) 1573-0417

[36] Waters MN Piehler MF Smoak JM. The development and persistence of alternative ecosystem states in a large, shallow lake[J]. Freshwater biol, 2010, 55: 1249-1261

[37] https://doi.org/10.1111/j.1365-2427.2009.02349.x

[38] Rodriguez AB Waters MN Piehler MF. Burning peat and reworking loess contribute to the formation and evolution of a large Carolina-bay basin[J]. Quaternary Research, 2012, 77: 171-181.

[39] DOI: https://doi.org/10.1016/j.yqres.2011.11.004

[40] Moorman MC Augspurger T Stanton JD Smith A. Where’s the Grass? Disappearing Submerged Aquatic Vegetation and Declining Water Quality in Lake Mattamuskeet[J]. JFWM, 2017, 8: 401-417.

[41] Rulifson RA Wall BL. Fish and blue crab passage through water control structures of a coastal bay lake[J]. North American Journal of Fisheries Management, 2006, 26(2): 317-326.

[42] DOI: 10.1577/M05-126.1

[43] Dockendorf KJ Potoka KM Thomas CD. Lake Mattamuskeet Creel Survey[R]. Federal Aid in Sport Fish Restoration. Project F-108. Final Report 52, 2014: 33.

[44] Kozak C. Troubles with Lake Mattamuskeet elude clear explanation[N]. 2014.

[45] http://outerbanksvoice.com/2014/02/26/troubles-with-lake-mattamuskeet-defy-clear-explanation

[46] Darnell, M.Z., D. Rittschof, R.B. Forward Jr. Endogenous swimming rhythms underlying the spawning migration of the blue crab, Callinectes sapidus: ontogeny and variation with ambient tidal regime[J]. Marine Biology, 2010, 157: 2415–2425

[47] Forward Jr RB Tankersley RA Welch, J. M. Selective tidal-stream transport of the blue crab Callinectes sapidus: An overview[J]. Bull. Mar. Sci. 2003, 72(2): 347-365.

[48] Carver AM Wolcott T Wolcott D Hines AH. Unnatural selection: Effects of a male-focused size-selective fishery on reproductive potential of a blue crab population[J]. J.E.M.B.E. 2005, 319: 29– 41.

[49] Ogburn MB Roberts PM Richie KD Johnson EG Hines AH. Temporal and spatial variation in sperm stores in mature female blue crabs Callinectes sapidus and potential effects on brood production in Chesapeake Bay[J]. MEPS, 2014, 507: 249–262

[50] Medici DA Wolcott TG Wolcott DL. Scale-dependent movements and protection of female blue crabs (Callinectes sapidus) [J]. Can. J. Fish. Aquat. Sci. 2006, 63: 858-871

[51] Rittschof D Darnell MZ Darnell KM Goldman Ogburn M McDowell RE, Estimating relative abundance of the female blue crab spawning stock in North Carolina, Biology and Management of Exploited Crab Populations Under Climate Change[C]. Alaska Sea Grant College Program, University of Alaska Fairbanks, Fairbanks, 2011.

[52] Weissburg MJ Zimmer-Faust RK. Odor plumes and how blue crabs use them in finding prey[J]. Journal of Experimental Biology, 1994, 197: 349-375.

[53] Clark ME Wolcott TG Wolcott DL and AH Hines. Intraspecific interference among foraging blue crabs Callinectes sapidus: interactive effects of predator density and prey patch distribution[J]. MEPS, 1999, 178:69-78.

[54] DOI: 10.3354/meps178069

[55] Hooper M. Pilot project to maximize the market potential of white belly crabs[R]. FRG-99-FEG-17 NCDMF report, 1999.

[56] Lastra M. Burrowing and Swash Behavior of the Pacific Mole Crab in Tropical Sandy Beaches[J]. Journal of Crustacean Biology, 2002, 22(1): 53-58.

[57] Aguilar R Johnson EG Hines AH Kramer MA Goodison MR. Importance of Blue Crab Life History for Stock Enhancement and Spatial Management of the Fishery in Chesapeake Bay[J]. Fisheries Science, 2008, 16: 117-124.

[58] https://doi.org/10.1080/10641260701681599

[59] Eggleston DB Parsons DM Kellison GT Plaia GR Johnson EG. Intense removal and non-saturating functional responses by recreational divers on spiny lobster Panulirus argus[J]. MEPS, 2003, 257: 197–20711

[60] Meyer GFR. Effects of Land Use Change on Juvenile Fishes, Blue Crab, and Brown Shrimp Abundance in the Estuarine Nursery Habitats in North Carolina[D]. PhD East Carolina University Greenville NC, 2011.

[61] Johnson EG 2004 Population Dynamics and Stock Assessment of the Blue Crab in North Carolina. (D) PhD North Carolina State University Raleigh, NC.

Downloads

Issue

Article Type

Articles