Lobster Fishery Connectivity and Management In Indonesia Waters

Authors

  • Waluyo waluyo Marine and Fisheries Polytechnic of Karawang, Ministry of Marine Affairs and Fisheries, Indonesia
  • Taslim Arifin Marine and Fisheries Polytechnic of Karawang, Ministry of Marine Affairs and Fisheries, Indonesia

DOI:

https://doi.org/10.30564/jfsr.v3i1.2466

Abstract

The distribution of lobsters in Indonesian waters is very wide, even lobster species in Indonesia are also scattered in the tropical waters of the western Pacific Ocean, the Indian Ocean, Africa to Japanese waters. Indonesian waters are divided into 11 (eleven) Fishery Management Zone (FMZ). Lobsters in Indonesia may come from various water areas, both national and regional water zones, and they’re called the sink population. Its spread is influenced by the movement of the current. Lobster seed is nurtured by nature through ocean currents from Australia, East Indonesia, Japan, then back to Australia. Lobsters have a complex life cycle, where adult lobsters inhabit coral reefs as a place to lay eggs, then hatch into planktonic larvae, and grow up in open seas and carry out diurnal and ontogenetic vertical migrations before returning to nurseries in shallow coastal areas and reefs, coral, as well as habitat by the type of species. Literature research had used at least two methodologies to estimate the distribution and connection sensitivity matrices of marine organism larvae. The two most common approaches are using genetic markers and numerical biophysical modeling. Thus, this research uses molecular genetic techniques to explain the genetic structure of lobster populations using a biophysical model approach that can explain the genetic structure of lobsters, as well as the distribution based on regional oceanographic synthesis data and lobster biology known in Indonesian waters. This model has four components, namely: 1) a benthic module based on a Geographical Information System (GIS) which is a lobster habitat in the spawning and recruitment process, 2) a physical oceanography module containing daily velocity in the form of a three-dimensional hydrodynamic model, 3) a larva biology module that describes larval life history characteristics, and 4) a Lagrangian Stochastic module that tracks the individual trajectories of larvae.

Keywords:

Lobster fishery, Fishery management areas, Lobster connectivity, Biophysical mode

References

[1] Pratiwi R. 2013. Lobster Komersial (Panulirus spp). Jurnal Oseana. Vol.XXXVII (2):55 68.

[2] Moosa MK. 1984. Udang Karang (Panulirus spp) di Perairan Indonesia. Lembaga Oseanologi Indonesia, LIPI. Jakarta. 40hal.

[3] Moosa MK, Aswandy I. 1984. Udang Karang (Panulirus spp) di Perairan Indonesia. Proyek Etudi Potensi Sumberdaya Hayati Ikan. Lembaga Oseanologi Indonesia, LIPI. Jakarta. 40hal.

[4] Romimohtarto K, Juwana S. 1999. Biologi Laut. Ilmu Pengetahuan Tentang Biologi Laut. Pusat Penelitian dan Pengembangan Oseanologi. LIPI. Jakarta. 527hal.

[5] Setyono DED. 2006. Budidaya Pembesaran Udang Karang (Panulirus spp). Jurnal Oceana. Vol. 31(4): 39-48.

[6] Jones C, Long N, Hoc D, Priyambodo B. 2010. Exploitation of Puerulus settlement for the development of tropical spiny lobster aquaculture in the Indo-West Pacific. J Mar Biol Assoc India. Vol.52: 292-303.

[7] PERMEN KP No.18/2014. Tentang Wilayah Pengelolaan Perikanan Negara Republik Indonesia. Jakarta. Indonesia.

[8] Kementerian Kelautan dan Perikanan. 2020. Rapat Koordinasi Lingkup Kementerian Kelautan dan Perikanan. Sentul. Indonesia.

[9] Dao HT, Smith-Keune C, Wolanski E, Jones CM, Jerry DR. 2015. Oceanographic Currents and Local Ecological Knowledge Indicate, and Genetics Does Not Refute, a Contemporary Pattern of Larval Dispersal for The Ornate Spiny Lobster, Panulirus ornatus in the South-East Asian Archipelago. J PLoS ONE Vol.10(5):1-19.

[10] Priyambodo B. 2020. Lobster: Apa Adanya. Rapat Koordinasi Lingkup Kementerian Kelautan dan Perikanan. Sentul. Indonesia.

[11] Lipcius RN, Cobb JS.1994. In:Phillips BF, Cobb JS, Kittaka JK, editors. Spiny lobster management. Oxford, UK : Fishing news books, 1-30.

[12] Goldstein JS, Matsuda H, Takenouchi T, Butler MJ IV. 2008. The complete development of larval Caribbean spiny lobster, Panulirus argus, in culture. J Crustacean Biology 28: 306-327.

[13] Ehrhardt NM. 2005. Population dynamic characteristics and sustainability mechanisms in key Western Central Atlantic spiny lobster, Panulirus argus, fisheries. Bull Mar Sci 76: 501-525.

[14] Australian Center for International Agriculture Research-Kementerian kelautan dan Perikanan. 2016. Kerjasama Penerapan Cultue Base Fisheries. Jakarta.

[15] Becker B, Levin L, Fodrie F, McMillan P. 2007. Complex larval connectivity patterns among marine invertebrate populations. Proc Natl Acad SCI USA 104:3267-3272.

[16] Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP. 2007. Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744.

[17] Hamilton SL, Casellea JE, Malone DP, Carr MH. 2010. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proc Natl Acad SCI USA 107: 18272-18277.

[18] Cowen RK, Paris CB, Srinivasan A. 2006. Scaling of connectivity in marine populations. Science 311: 522-527.

[19] Hidalgo M, Gusdal Y, Dingsør DE, Hjermann D, Ottersen G, et al. 2011. A combination of hydrodynamical and statistical modeling reveals non-stationary climate effects on fish larvae distributions. Proc R Soc B. DOI: 10.1098/rspb.2011.0750.

[20] Paris CB, Cowen RK, Claro R, Lindeman KC. 2005. Larval transport pathways from Cuban spawning aggregations (Snappers; Lutjanidae) based on biophysical modeling. Mar Ecol Prog Ser 296: 93-106.

[21] Paris CB, Cowen RK. 2004. Direct evidence of a biophysical retention mechanism for coral reef larvae. Limnol Oceanogr 49: 1964-1979.

[22] Planes S, Jones GP, Thorrold SR. 2009. Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA106: 5693-5697.

[23] Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S.2011. Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc R Soc B. DOI: 10.1098/rspb.2010.2780.

[24] Puebla O, Bermingham E, McMillan WC. 2012. On the spatial scale of dispersal in coral reef fishes. Mol Ecol. DOI: 10.1111/j.1365-294X.2012.05734.x.

[25] Roberts CM. 1997. Connectivity and management of coral reefs. Science 278: 1454-1457.

[26] Pelc RA, Warner RR, Gaines SD, Paris CB (2010) Detecting larval export from marine reserves. Proc Natl Acad SCI USA 107: 18266–18271.

[27] Lowe WH, Allendorf FW. 2010. What can genetics tell us about population connectivity? Mol Ecol. DOI: 10.1111/j.1365-294X.2010.04688.x.

[28] Waples RS, Punt AE, Cope JM. 2008. Integrating genetic data into management of marine resources: how can we do it better? Fish and Fisheries 9: 423-449.

[29] Cowen R, Sponaugle S. 2009. Larval dispersal and marine population connectivity. Marine Science 1: 443-466. PMID: 21141044.

[30] Feutry P, Vergnes A, Broderick D, Lambourdière J, Keith P, Ovenden JR. 2013. Stretched to the limit; can a short pelagic larval duration connect adult populations of an Indo-Pacific diadromous fish (Kuhlia rupestris)? Molecular ecology 22(6):1518-1530. DOI: 10.1111/mec.12192 PMID: 23294379.

[31] Gilg MR, Hilbish TJ. 2003. The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84(11): 2989-2998.

[32] Pitcher CR, Turnbull C, Atfield J, Griffin D, Dennis D, Skewes TD. 2005. Biology, larval transport modelling and commercial logbook data analysis to support management of the NE Queensland rock lobster Panulirus ornatus fishery: CSIRO Marine Research. 144 p.

[33] Villanoy CL. 2004. Larval dispersal simulation of the spiny lobsters, Panulirus ornatus, in the Philippines using merged altimeter-derived absolute dynamic topographies. in: Williams, K.C. (Ed.), Spiny lobster ecology and exploitation in the South China Sea region, Proceedings of a workshop held at the Institute of Oceanography, Nha Trang, Vietnam, July 2004 (ACIAR Proceedings No. 120): 49-54.

[34] Schiller A, Oke PR, Brassington G, Entel M, Fiedler R, Griffin DA et al. (2008) Eddy-resolving ocean circulation in the Asian–Australian region inferred from an ocean reanalysis effort. Progress in Oceanography 76(3): 334-365.

[35] Gaspar P, Benson SR, Dutton PH, Réveillère A, Jacob G, Meetoo C et al. 2012. Oceanic dispersal of juvenile leatherback turtles: going beyond passive drift modeling. Marine Ecology Progress Series 457: 265- 284 (DOI: 10.3354/meps09689).

[36] Gordon AL (2005) Oceanography of the Indonesia Seas. Oceanography-Washington Dcoceanography Society 18(4): 15-27.

[37] Holthuis L. 1991. FAO species catalogue. Marine lobsters of the world. An annotated and illustrated catalogue of species of interest to fisheries known to date. FAO Fisheries Synopsis 13(125): 1-292.

[38] Booth J, Phillips B. 1994. Early life history of spiny lobster. Crustaceana 66(3): 271-294.

[39] MacFarlane J, Moore R. 1986. Reproduction of the ornate rock lobster, Panulirus ornatus (Fabricius). Papua New Guinea. Australian Journal of Marine and Freshwater Research 37: 55-65.

[40] Moore R, MacFarlane J. 1984. Migration of the ornate rock lobster, Panulirus ornatus (Fabricius). Papua New Guinea. Australian Journal of Marine and Freshwater Research 35: 197-212.

[41] Phillips B, Matsuda H. 2011. A Global Review of Spiny Lobster Aquaculture. Recent Advances and New Species in Aquaculture. 22-84.

[42] Phillips B. 2013. Lobsters: Biology, management, aquaculture and fisheries: John Wiley& Son. 528 p.

[43] Williams K. 2004. Spiny lobster ecology and exploitation in the South China Sea region: proceedings of a workshop held at the Institute of Oceanography, Nha Trang, Vietnam, July 2004: Australian Centre for International Agricultural Research.

[44] Botsford LW, White JW, Coffroth MA, Paris CB, Planes S, et al. 2009. Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs. DOI: 10.1007/s00338-009-0466-z.

[45] Paris CB, Helgers J, Van Sebille E, Srinivasan A. 2013. The Connectivity Modeling System: A probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environ Modell Softw. DOI: 10.1016/j.envsoft.2012.12.006.

[46] Sponaugle S, Paris CB, Walter KD, Kourafalou V, d’Alessandro E. 2012. Observed and modeled larval settlement of a reef fish in the Florida Keys. Mar Ecol Prog Ser 453: 201-212.

[47] Muller R, Matthews T, FWC collector data 2005– 2009, (FWC, Marathon, FL 33001 USA).

Downloads

Issue

Article Type

Reviews