Effects of Lizardite Addition on Technological Properties of Forsterite-monticellite Rich Ceramics Prepared from Natural Magnesite and Dolomite


  • Ahmed Manni Hassan II University of Casablanca, Faculty of sciences Ben M'Sick
  • Achraf Harrati Hassan II University of Casablanca, Faculty of sciences Ben M'Sick
  • Abdelilah El Haddar University of Mohammed 1, Faculty of Sciences Oujda
  • Abdelwahed Chari Mohammed VI Polytechnic University
  • Ali Sdiri University of Sfax, National Engineering School
  • Fahd Oudrhiri Hassani University of Cadi Ayyad, ENSA of SAFI
  • Abdeslam El Bouari Hassan II University of Casablanca, Faculty of sciences Ben M'Sick
  • Iz-Eddine El Amrani El Hassani Mohammed V University of Rabat, Scientific Institute
  • Chaouki Sadik Hassan II University of Casablanca, Faculty of sciences Ben M'Sick




Lizardite rich peridotite has never been used to prepare ceramic specimens, especially in Morocco. For this raison, potential use of naturally abundant lazirditic material from the Rif domain, as a supply for ceramic industry, has been evaluated. The effects of lizardite addition to magnesite and dolomite mixtures on the thermomechanical properties of the calcined ceramics were also detailed. To achieve this target, natural lizardite, magnesite and dolomite samples were collected in ultrabasic Beni Bousra massif. Those raw samples were used for the synthesis of a forsterite-monticellite rich ceramics. Both raw and sintered samples were characterized by x-ray diffraction, scanning electron microscope and fourier transform infrared. The obtained results showed that both magnesite and dolomite were mainly composed of MgCO3 and CaCO3. In contrast, lizardite sample showed high amounts of SiO2, MgO and Fe2O3. An increased amount of lizardite in the initial mixtures enhanced mechanical and dimensional properties of the prepared ceramic specimens, and subsequently, the production of ceramics with the required technological properties. Thus, the preparation of Moroccan lizardite-based ceramics is technically feasible, economically justifiable and socially desirable due to the contribution to the economic growth of the raw materials sector, especially ceramic industry.


Forsterite, Monticellite, Lizardite, Basic ceramics, Temperature


[1] C. Sadik, I. El Amrani, A. Albizane. Influence de la nature chimique et minéralogique des argiles et du processus de fabrication sur la qualité des carreaux céramiques. MATEC Web of Conferences2 (2012) Article ID : 01016.

[2] C. Sadik, I. Amrani, A. Albizane. Effect of carbon graphite on the crystallization of andalusite: Application to the synthesis of mullite and the improvement of refractory quality. Materials Sciences and Applications, Vol. 4 No. 6, 2013, pp. 337-346.

[3] C. Sadik, I. El Amrani, A. Albizane. Composition and ceramic characteristics of cretaceous clays from Morocco. Advances in Science and Technology. 92 (2014) 209-214.

[4] A. Harrati, A. Manni, A. El Bouari, I. El Amrani El Hassani, C. Sadik. Elaboration and thermomechanical characterization of ceramic-based on Moroccan geomaterials: Application in construction. Materials Today: Proceedings. 30 (2020) 876-882.

[5] C. Sadik, A. Manni, S. El Kalakhi, I. El Amrani, Preparation and characterization of possible basic ceramics from Moroccan magnesite. J Aust Ceram Soc. 55 (2019) 415–423.

[6] C. Sadik, I. El Amrani, A. Albizane. Processing and characterization of alumina-mullite ceramics. Journal of Asian Ceramic Societies. 2 (2014) 310–316.

[7] C. Sadik, I. Amrani, A. Albizane. Composition and refractory properties of mixtures of Moroccan silica-alumina geomaterials and alumina. New Journal of Glass and Ceramics. 3 (59-66) 2013.

[8] A. Manni, B. Achiou, A. Karim, A. Harrati, C. Sadik, M. Ouammou, S. Alami Younssi, A. El Bouari. New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment. Journal of Environmental Chemical Engineering. 8 (2020) 103906.

[9] C. Sadik, I. El Amrani, A. Albizane. Recent advances in silica-alumina refractory: A Review. Journal of Asian Ceramics Societies. 2 (2014) 83-96.

[10] A. Harrati, A. Manni, F.O. Hassani, A. Sdiri, S. El Kalakhi, A. El Bouari, I. El Amrani El Hassani, C. Sadik. Potentiality of new dark clay-rich materials for porous ceramic applications in Ouled Sidi Ali Ben Youssef Area (Coastal Meseta, Morocco). Journal of the Spanish Ceramic and Glass Society. In press.

[11] D.A. Brosnan, Alumina–silica brick, in: C.A. Schacht (Ed.), Refractories Handbook, Marcel Dekker Inc., New York, 2004, pp. 79–107.

[12] C. Sadik, I. El Amrani, O. Moudden, A. El Bouari. Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. Journal of Asian ceramics Societies. 4 (2016) 219–233.

[13] Wang, F., Ye, J., He, G., Liu, G., Xie, Z., Li, J.: Preparation and characterization of porous MgAl2O4 spinel ceramic supports from bauxite and magnesite. Ceram. Int. 41, 7374–7380 (2015)

[14] Ghosh, C., Ghosh, A., Tripathi, H.S., Ghosh, J., Haldar, M.K.:Studies on densification, mechanical, microstructural and structure–properties relationship of refractory aggregates prepared from Indian magnesite by changing lime–silica ratio. Ceram. Int. 40 (16791–16798 (2014)

[15] Burhanuddin, A.,Kumar, P., Kumar, A.,Ghosh, S., Sinhamahapatra, S., Tripathi, H.S.: Effect of zirconia on densification and properties of natural Indian magnesite. Int. J. Miner. Process. 144, 40–45 (2015)

[16] Serry, M.A., El-Kholi, M.B., Elmaghraby, M.S., Telle, R.: Characterization of Egyptian dolomitic magnesite deposits for the refractories industry. Ceram. Int. 28, 575–583 (2002)

[17] Rabah, M., Ewais, E.M.M.: Multi-impregnating pitch-bonded Egyptian dolomite refractory brick for application in ladle furnaces. Ceram. Int. 35, 813–819 (2009)

[18] Ewais, E.M.M., Bayoumi, I.M.I., El-korashy, S.A.:M-CZ composites from Egyptian magnesite as a clinker to RCK refractory lining. Ceram. Int. 44, 2274–2282 (2018)

[19] Saha, A., Singh, S.K., Ghosh, A., Ghosh, J., Haldar, M.K.: Studies on synthesis and properties of magnesia refractory aggregates prepared from Indian magnesite through plasma fusion. Ceram. Int. 41 (2876–2883 (2015)

[20] Sinhamahapatra, S., Tripathi, H.S., Ghosh, A.: Densification and properties of magnesia-rich magnesium-aluminate spinel derived from natural and synthetic raw materials. Ceram. Int. 42, 5148–5152 (2016)

[21] Nan,W., Min, C., Yue-yuan, L., Hong-wei, N.: Preparation of MgO whisker from magnesite tailings and its application. Trans. Nonferrous Metals Soc. China. 21, 2061–2065 (2011)

[22] Yuna, Z., Guocai, Z.: A technology of preparing honeycomb-like structure MgO from low grade magnesite. Int. J. Miner. Process. 126, 35–40 (2014)

[23] Thomaidis, E., Kostakis, G.: Synthesis of cordieriticmaterials using raw kaolin, bauxite, serpentinite/olivinite and magnesite. Ceram. Int. 41, 9701–9707 (2015)

[24] A. El Haddar, A. Manni, A. Azdimousa, I. El Amrani El Hassani, A. Bellil, C. Sadik, N. Fagel, M. El Ouahabi. Elaboration of a high mechanical performance refractory from halloysite and recycled alumina. Journal of the Spanish Ceramic and Glass Society. 59 (2020) 95-104.

[25] M. El Ouahabi, L. Daoudi, F.D. Vleeschouwer, R. Bindler, N. Fagel, Potentiality of Clay Raw Materials from Northern Morocco in Ceramic Industry: Tetouan and Meknes Areas, J. Min. Mat. Char. Eng.. 2 (2014) 145-159.

[26] Kornprobst, J. (1974). Contribution à l’étude pétrographique et structurale de la zone interne du Rif, Notes et Mém. Serv. géol. Maroc, 251, 256 pp

[27] G.W. Brindley. 1980. Quantitative X-ray mineral analysis of clays. In: Brindley, G.W., Brown, G. (Eds.), Crystal Structures of Clay Minerals and Their X-ray Identification, Monograph 5. Mineralogical Society, London, pp. 411–438.

[28] ASTM C674-88, Standard test methods for flexural properties of ceramic whiteware materials.

[29] R. H. Marion et K. Johnstone, A parametric study of the diametral compression test

[30] of ceramics, Am. Ceram. Soc. Bull., 56 (1977), 998.

[31] Fei Zhao, Lixin Zhang, Zhen Ren, Jinxing Gao, Xiaoyu Chen, Xinhong Liu, Tiezhu Ge. A novel and green preparation of porous forsterite ceramics with excellent thermal isolation properties. Ceramics International 45 (2019) 2953–2961

[32] ASTM C373-88, Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products, Glass Ceramic 15-02 (2006).

[33] J. B. Ferguson and H. E. Merwin. The Ternary System CaO-MgO-SiO2. Proceedings of the National Academy of Sciences of the United States of America, Vol. 5, No. 1 (Jan. 15, 1919), pp. 16-18

[34] M. Hajjaj, Mineralogy and thermal transformation of clay materials from the district of Marrakech, Morocco, Comunicações Geológicas (2014) 101, 1, 75-80.

[35] Abi, C. E., Gürel, S. B., Kılınç, D., & Emrullahoglu, Ö. F. (2015). Production of forsterite from serpentine–Effects of magnesium chloride hexahydrate addition. Advanced Powder Technology, 26(3), 947-953.

[36] Bain, D. C., Fraser, A. R., 1994. An unusually interlayered clay mineral from the eluvial horizon of a humus-iron podzol. Clay Minerals, 29, 69-76.

[37] Manni, A., El Haddar, A., El Hassani, I. E. E. A., El Bouari, A., & Sadik, C. (2019). Valorization of coffee waste with Moroccan clay to produce a porous red ceramics (class BIII). Boletín de la Sociedad Española de Cerámica y Vidrio.

[38] İ. Kıpçak, T.G. Isıyel, Magnesite tailing as low-cost adsorbent for the removal of copper (II) ions from aqueous solution, Korean J. Chem. Eng. 32 (2015) 1634–1641.

[39] M.B. Gawande, P.S. Branco, K. Parghi, J.J. Shrikhande, R.K. Pandey, C.A.A. Ghumman, N. Bundaleski, O.M.N.D. Teodoro, R.V. Jayaram, Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications, Catal. Sci. Technol. 1 (2011) 1653.

[40] Gopinath, D., Gunasekaran, S., 2018, The FTIR Spectra of Raw Magnesite and Sintered Magnesite, International Journal of Trend in Scientific, ISSN No: 2456-6470, Volume – 2, Issue – 4.

[41] T.W. Cheng, Y.C. Ding, J.P. Chiu. A study of synthetic forsterite refractory materials using waste serpentine cutting. Minerals Engineering 15 (2002) 271–275

[42] Hartman M, Trnka O, Vesely V, Svoboda K. Predicting the rate of thermal decomposition of dolomite. Chem Eng Sci. 1996;51:5229–32.

[43] Kristo´f-Mako E, Juha´sz AZ. The effect of mechanical treatment on the crystal structure and thermal decomposition of dolomite. Thermochim Acta. 1999;342:105–14.

[44] Fazeli AR, Tareen JAK. Thermal decomposition of rhombohedral double carbonates of dolomite type. J Therm Anal Calorim. 1991;37:2605–11.

[45] Zussman, J., R. Howie, and W. Deer, An introduction to the rock forming minerals. 1992, Longman, UK.

[46] Soga, N., & ANDERSON, O. L. (1967). High‐temperature elasticity and expansivity of forsterite and steatite. Journal of the American Ceramic Society, 50(5), 239-242.

[47] Bafrooei, H. B., Ebadzadeh, T., & Majidian, H. (2014). Microwave synthesis and sintering of forsterite nanopowder produced by high energy ball milling. Ceramics International, 40(2), 2869-2876.



Article Type