Correction & Withdrawal Policies
Factors Affecting Catecholamines in Caregivers of Patients with Dementia
DOI:
https://doi.org/10.30564/jgm.v3i1.2712Abstract
Background: Caregivers of dementia patients have significantly higher levels of serum IL-6 and CRP compared to non-caregivers, and the accumulation of everyday stressors reportedly promotes the induction of inflammatory markers. However, few studies have identified factors that affect catecholamine levels in caregivers who experience a combination of physical and mental stress from caregiving. Purpose: This study aimed to identify physical factors that impact catecholamine levels in caregivers of dementia patients. Methods: Participants were elderly caregivers living together with elderly Alzheimer’s-type dementia patients. We performed logistic regression analysis, with levels of adrenaline, noradrenaline, and dopamine (indicators of catecholamine) as dependent variables. Results: Caregiver BMI had a significant impact on adrenaline levels (OR: 0.792; 95%CI: 0.654-0.960) and noradrenaline levels (OR: 1.210; 95%CI: 1.009-1.451), whereas age had a significant impact on dopamine levels (OR: 1.162; 95%CI: 1.019- 1.324). Discussion: While caregiver BMI significantly impacted adrenaline and noradrenaline levels, the mechanism underlying these relationships is unclear. One possibility is that obesity (BMI) and a rise in sympathetic nerve activity contributed to hypertension. Our findings suggest that chronic stress in elderly caregivers may potentially impair the dopaminergic activation system in the brain. Conclusion: There is a need to identify factors which increase BMI in caregivers. Future studies aimed at gaining a better understanding of the lifestyle habits of caregivers and intervention studies aimed at reducing their BMI are warranted
Keywords:
Age; BMI; Caregiver burden; Catecholamine; DementiaReferences
[1] Schulz R, Beach SR. Caregiving as a risk factor for mortality: the Caregiver. Health Effects Study, JAMA, 1999, 282:2215-2219. DOI:https://doi.org/10.1001/jama.282.23.2215
[2] von Kanel R, Dimsdale JE, Adler KA, Patterson TL, Mills PJ, Grant I. Exaggerated plasma fibrin formation (D-dimer) in elderly Alzheimer caregivers as compared to noncaregiving controls. Gerontology, 2005, 51:7-13. DOI:https://doi.org/10.1159/000081428
[3] Gouin JP, Glaser R, Malarkey WB, Beversdorf D, Kiecolt-Glaser J. Chronic stress, daily stressors, and circulating inflammatory markers. Health Psychol, 2012, 31:264-268. DOI:https://doi.org/10.1037/a0025536
[4] Waring SC, Doody RS, Pavlik VN, Massman PJ, Chan W. Survival among patients with dementia from a large multi-ethnic population. Alzheimer Dis Assoc Disord, 2005, 19:178-183. DOI:https://doi.org/10.1097/01.wad.0000189033.35579.2d
[5] Kim Y, Schulz R. Family caregivers’ strains: comparative analysis of cancer caregiving with dementia, diabetes, and frail elderly caregiving. J Aging Health, 2008, 20:483-503. DOI:https://doi.org/10.1177/0898264308317533
[6] Schoenmakers B, Buntinx F, Delepeleire J. Factors determining the impact of care-giving on caregivers of elderly patients with dementia. A systematic literature review. Maturitas, 2010, 66(2):191-200. DOI:https://doi.org/10.1016/j.maturitas.2010.02.009
[7] Prenderville JA, Kennedy PJ, Dinan TG, Cryan JF. Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci, 2015, 38(1):13-25. DOI:https://doi.org/10.1016/j.tins.2014.11.001
[8] Jung YH, Shin NY, Jang JH, et al. Relationships among stress, emotional intelligence, cognitive intelligence, and cytokines. Medicine (Baltimore) 2019, 98:e15345. DOI:https://doi.org/10.1097/MD.0000000000015345
[9] Ziegler MG, Milic M. Sympathetic nerves and hypertension in stress, sleep apnea, and caregiving. Curr Opin Nephrol Hypertens. 2017, 26(1):26-30. DOI:https://doi.org/10.1097/MNH.0000000000000288
[10] Zarit SH, Reever KE, Bach-Peterson J. Relatives of the impaired elderly: correlates of feelings of burden. Gerontologist 1980; 20: 649–655.
[11] Brown MR, Fisher LA. 1.E41. Brain peptide regulation of adrenal epinephrine secretion. Am J Physiol. 1984, 247(1 Pt 1):E41-6. DOI:https://doi.org/10.1152/ajpendo.1984.247
[12] Udelsman R, Goldstein DS, Loriaux DL, Chrousos GP. Catecholamine-glucocorticoid interactions during surgical stress. J Surg Res, 1987, 43(6): 539-45. DOI:https://doi.org/10.1016/0022-4804(87)90128-4
[13] Naito Y, Fukata J, Tamai S, Seo N, Nakai Y, Mori K, Imura H. Biphasic changes in hypothalamo-pituitary-adrenal function during the early recovery period after major abdominal surgery. J Clin Endocrinol Metab, 1991, 73(1):111-7. DOI:https://doi.org/10.1210/jcem-73-1-111
[14] Weissman C. The metabolic response to stress: an overview and update. Anesthesiology, 1990, 73(2):308-27. DOI:https://doi.org/10.1097/00000542-199008000-00020
[15] Halter JB, Pflug AE, Porte D Jr. Mechanism of plasma catecholamine increases during surgical stress in man. J Clin Endocrinol Metab, 1977, 45(5):936-44. DOI:https://doi.org/10.1210/jcem-45-5-936
[16] Esler M. Assessment of sympathetic nervous function in humans from noradrenaline plasma kinetics. Clin Sci (Lond). 1982, 62(3):247-54. DOI:https://doi.org/10.1042/cs0620247
[17] Goyarts E, Matsui M, Mammone T, Bender AM, Wagner JA, Maes D, Granstein RD. Norepinephrine modulates human dendritic cell activation by altering cytokine release. Exp Dermatol, 2008, 17(3):188-96. DOI:https://doi.org/10.1111/j.1600-0625.2007.00677.x
[18] Maestroni GJ. Short exposure of maturing, bone marrow-derived dendritic cells to norepinephrine: impact on kinetics of cytokine production and The development. J Neuroimmunol. 2002, 129(1-2):106-14. DOI:https://doi.org/10.1016/s0165-5728(02)00188-1
[19] LeBlanc J, Côté J, Jobin M, Labrie A. Plasma catecholamines and cardiovascular responses to cold and mental activity. J Appl Physiol Respir Environ Exerc Physiol, 1979, 47(6):1207-11. DOI:https://doi.org/10.1152/jappl.1979.47.6.1207
[20] Flaa A, Sandvik L, Kjeldsen SE, Eide IK, Rostrup M. Does sympathoadrenal activity predict changes in body fat? An 18-y follow-up study. Am J Clin Nutr, 2008, 87(6):1596-601. DOI:https://doi.org/10.1093/ajcn/87.6.1596
[21] Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003, 42(4): 474-80. DOI:https://doi.org/10.1161/01.HYP.0000091371.53502.D3
[22] Mauriège P, Klein Kranenbarg WM, Prud’homme D, Lamarche B, Tremblay A, Bouchard C, Nadeau A, Després JP. Insulin and glucagon responses to adrenaline infusion in abdominal obese men. Int J Obes Relat Metab Disord, 1996, 20(7):668-76.
[23] Masuo K, Mikami H, Itoh M, Ogihara T, Tuck ML. Sympathetic activity and body mass index contribute to blood pressure levels. Hypertens Res. 2000, 23(4):303-10. DOI:https://doi.org/10.1291/hypres.23.303
[24] Volkow ND, Logan J, Fowler JS, GJ. Wang, Gur RC, C. Wang, Felder C, Gatley SJ, YS. Ding, Hitzemann R, Pappas N. Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry. 2000, 157(1):75-80. DOI:https://doi.org/10.1176/ajp.157.1.75
[25] Lavalaye J, Booij J, Reneman L, Habraken JB, van Royen EA. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur J Nucl Med. 2000, 27(7): 867-9. DOI:https://doi.org/10.1007/s002590000279
[26] Block ML, Hong JS. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans, 2007, 35(Pt 5):1127-32. DOI:https://doi.org/10.1042/BST0351127
[27] HM. Gao, B. Liu, JS. Hong. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci, 2003, 16, 23(15):6181-7. DOI:https://doi.org/10.1523/JNEUROSCI.23-15-06181.2003
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2021 Akemi Hirano, Yusuke Suzuki, Toshio Hayashi, Koichiro Ina, Joji Onishi
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.