Modeling and Simulation of the Deactivation by Sintering of the Cobalt Catalyst during the Fischer-Tropsch Reaction


  • Dounia Alihellal Laboratoire de Génie des Procédés Chimiques (LGPC), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Sétif 1, UN1901 Sétif
  • Lemnouer Chibane Laboratoire de Génie des Procédés Chimiques (LGPC), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Sétif 1, UN1901 Sétif
  • Mohamed El-Amine Slimani Faculty of Physics; University of Science and Technology Houari Boumediene (USTHB)



In the present work, the deactivation by sintering of cobalt based catalyst during Fischer-Tropsch synthesis at low temperature was studied by numerical simulation. For this purpose, a mathematical model was developed. The obtained simulation results allowed us to highlight and improve the understanding of the deactivation phenomena of cobalt based Fischer-Tropsch catalysts by sintering. The main results also show that the sintering phenomenon is strongly dependent on the operating conditions, in particular, the temperature, the pressure, and the H2/CO molar ratio, as well as the reaction by- products such as water. The results obtained can, therefore, be used to understand more the sintering mechanism which may be linked to the change in the concentration of the active sites and the reaction rates.


Clean fuels; Fischer-Tropsch process; Cobalt catalysts; Deactivation by sintering The Fischer


[1] [ 1 ] W. Chen, T. Lin, Y.dai, Y.An, F.Yu, L.Zhong, S. Li, Y.Sun,“Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts,”Catal.Today.311 (2018): 8-22

[2] [ 2 ] L.Guo ,J.Sun ,J.Wei , Z. Wen, H.Xu ,Q.Ge,“ Fischer-Tropsch synthesis over iron catalysts with corncob-derived promoters,”J. Energy Chem. 26 (4) (2017): 632-638

[3] [ 3 ] S.Golestan, A.A.Mirzaei, H.Atashi, “Kinetic and mechanistic studies of Fischer-Tropsch synthesis over thenano-structured iron-cobalt-manganese catalyst prepared by hydrothermal procedure,” Fuel, 200 (2017): 407-418

[4] [ 4 ] W. Ma, G. Jacobs, V. R. R.Pendyala, D. E. Sparks,W. D. Shafer, G. A. Thomas, A. MacLennan, Y. Hu, B. H. Davis, “Fischer-Tropsch synthesis. Effect of KCl contaminant on the performance of iron and cobalt catalysts,”Catal.Today.299 (2018): 28-361

[5] [ 5 ] N. E. Tsakoumis, M.Ronning, O. Borg, E.Rytter, A. Holmen, “Deactivation of cobalt based Fischer–Tropsch catalysts: A review,”Catal.Today.154 (2010): 162-182

[6] [ 6 ] N. E. Tsakoumis, A.Voronov, M.Ronning, W. van Beek, O.Borg,E.Rytter, A. Holmen, “Fischer-Tropsch synthesis: An XAS/XRPD combined in situ study from catalyst activation to deactivation,”J.Catal.291(2012): 138-148

[7] [ 7 ] J. Paterson , M. Peacock , E. Ferguson , M. Ojeda , J. Clarkson, “In Situ X-ray Diffraction of Fischer-Tropsch Catalysts-Effect of Water on the Reduction of Cobalt Oxides,” Appl. Catal. A- Gen. 546 ( 2017): 103-110

[8] [ 8 ] P. A. Steynberg, S. R. Deshmukh, H. J. Robota, “Fischer-Tropsch catalyst deactivation in commercial microchannel reactor Operation, ” Catal. Today, 299 ( 2018):10-13

[9] [ 9 ] A. Nakhaei Pour, S. Ali Taheri, S. Anahid, B. Hatami, A. Tavasoli, “Deactivation studies of Co/CNTs catalyst in Fischer-Tropsch synthesis, ” J Na. Gas Sci Eng. 18 (2014): 104-111

[10] D.J. Moodley, A.M. Saib, J. van de Loosdrecht, C.A. Welker-Nieuwoudt, B.H. Sigwebela, J.W. Niemantsverdriet, “The impact of cobalt aluminate formation on the deactivation of cobalt-based Fischer–Tropsch synthesis catalysts,” Catal. Today. 171 (2011): 192– 200

[11] E. Rytter, A. Holmen, “Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts-A Mini-Review, ” Catal. 5 (2015): 478-499

[12] A. Carvalho, V. V. Ordomsky, Y. Luo, M. Marinova, A. R. Muniz, N. R. Marcilio, A. Y. Khodakov, “Elucidation of deactivation phenomena in cobalt catalyst for Fischer-Tropsch synthesis using SSITKA, ” J. Catal. 344 (2016): 669-679

[13] C. Lancelot, V. V. Ordomsky, O. S. M. Sadeqzadeh, H. Karaca, M. Lacroix, D. Curulla-Ferré, F. Luck, P. Fongarland, A. Griboval-Constant, A. Y. Khodakov, “Direct Evidence of Surface Oxidation of Cobalt Nanoparticles in Alumina-Supported Catalysts for Fischer−Tropsch Synthesis, ” ACS Catal. 4 (2014):4510-4515

[14] K. Keyvanloo, M.C.J. Fisher, W.C. Hecker, R. J. Lancee, G. Jacobs, C. H. Bartholomew, “Kinetics of deactivation by carbon of a cobalt Fischer–Tropsch catalyst: Effects of CO and H2 partial pressures, ” J. Catal. 327 (2015): 33–47

[15] M. Sadeqzadeh, J. Hong, P. Fongarl, D. Curulla-Ferré, F. Luck, J. Bousquet, D. Schweich, A.Y. Khodakov, “Mechanistic Modeling of Cobalt Based Catalyst Sintering in a Fixed Bed Reactor under Different Conditions of Fischer-Tropsch Synthesis,”Ind. Eng. Chem. Res. 51(2012): 11955–11964

[16] A. K. Dalai,T. K. Das, K. V. Chaudhari, G. Jacobs, B. H. Davis, “Fischer-Tropsch synthesis: Water effects on Co supported on narrow and wide-pore silica, ”Appl. Catal. A- Gen.289 (2) (2005): 135-14210

[17] I. C. Yates, C. N. Satterfield, “Intrinsic Kinetics of the Fischer-Tropsch Synthesis on a Cobalt Catalyst,”Energ.Fuel. 5 (1991): 168-173

[18] L. C. A. Mazzone, F. A. N. Fernandes, “Modeling of Fischer-Tropsch synthesis in a tubular reactor,” Latin. Am. Appl. Res. 36 (2006): 141-148

[19] M. Sadeqzadeh, S. Chambrey, S. Piche, P. Fongarland, F. Luck, D. Curulla-Ferre,D. Schweich, J. Bousquetc, A.Y. Khodakov, “Deactivation of a Co/Al2O3 Fischer-Tropsch catalyst by water-induced sintering in slurry reactor: Modeling and experimental investigations,”Catal. Today, 215 (2013): 52-59



Article Type