
Search
Search Results
Found one item.
1 - 1 of 1 items
Abstract:
Features in educational data are ambiguous which leads to noisy features and curse of dimensionality problems. These problems are solved via feature selection. There are existing models for features selection. These models were created using either a single-level embedded, wrapperbased or filter-based methods. However single-level filter-based methods ignore feature dependencies and ignore the interaction... More