-
1384
-
1326
-
1294
-
Human Being Emotion in Cognitive Intelligent Robotic Control Pt I: Quantum / Soft Computing Approach1217
-
1205
Intelligent control of mobile robot with redundant manipulator & stereovision: quantum / soft computing toolkit
DOI:
https://doi.org/10.30564/aia.v2i2.1440Abstract
The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed. An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced. Design of robust knowledge bases is performed using a developed computational intelligence – quantum / soft computing toolkit (QC/SCOptKBTM). The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described. The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described. The general design methodology of a generalizing control unit based on the physical laws of quantum computing (quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal) is considered. The modernization of the pattern recognition system based on stereo vision technology presented. The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system.
Keywords:
quantum / soft computing optimizer; knowledge base; fuzzy controller; quantum fuzzy inference; multi-agent systems; mobile robot stereo visionReferences
[1] Sergei V. Ulyanov, Kazuo Yamafuji, Valery G. Gradetsky, Andrea Pagni. Expert fuzzy-neuro controller design for wall climbing robot for decontamination of nuclear-power station [J]. 1995, vol. 7, no. 1, pp. 75-85.
[2] Ulyanov S.V., Yamafuji K., Fukuda T. Development of intelligent mobile robots for service use and mobile automation systems including wall climbing robots: Pt. 1: Fundamental design principles and motion models [J]. Intern. J. of Intelligent Mechatronics, 1995, vol. 1, no. 3, pp. 111–143.
[3] Takayuki Tanaka, Junji Ohwi, Ludmila V. Litvintseva, Kazuo Yamafuji, Sergei V. Ulyanov. Intelligent control of a mobile robot for service use in office buildings and its soft computing algorithms [J]. Journal of Robotics and Mechatronics, 1996, vol. 8, no. 6, pp. 538-552.
[4] Ulyanov S. V. Quantum fast algorithm computational intelligence Pt I: SW/HW smart toolkit [J]. Artificial Intelligence Advances, 2019, vol. 1, no. 1, pp. 18-43.
[5] T. Tanaka, J. Ohwi, L.V. Litvintseva, K. Yamafuji, S.V. Ulyanov. Soft computing algorithms for intelligent control of a mobile robot for service use Pt II: Path planning, navigation and technology operations [J]. Soft Computing, 1997, vol. 1, pp. 99—106.
[6] Ulyanov S. V., Litvintseva L. V., Sorokin S. V. Robastnost’ baz znanij samoorganizujuschihsya intellectual’nih regilyatorov v nepredvidennih situatsiyah upravlenija [J]. Fuzzy Systems and Soft Computing, 2008, vol. 3, no. 4, pp. 49 – 73.
[7] R. Mohammadi, C. Lucas and B. N. Araabi, "A novel controller for a power system based BELBIC", Proceedings of World Automation Congress, Vol. 18, (2004), pp. 409-420.
[8] Litvintseva L. V., Ulyanov I. S., Ulyanov S. V., Ulyanov S. S. Quantum Fuzzy Inference for Knowledge Base Design in Robust Intelligent Controllers [J]. Journal of Computer and Systems Sciences International, 2007, vol. 46, no. 6, pp. 908–961.
[9] Ulyanov S.V. System and method for control using quantum soft computing) [P]. US Patent No 7,383,235 B1, 2003; EP PCT 1 083 520 A2, 2001; Efficient simulation system of quantum algorithm gates on classical computer based on fast algorithm [P]. US Patent No 883 2006/0224547 A1, 2006.
[10] Ulyanov, S. V. Intelligent Robust Control System Based on Quantum KB-Self-organization: Quantum Soft Computing and Kansei / Affective Engineering Technologies [J]. Springer International Publishing, 2014, pp. 37-48.
[11] Ohwi J., Ulyanov S.V., Yamafuji K. GA in continuous space and fuzzy classifier system for opening a door with a manipulator of mobile robot: New Benchmark of evolutionary intelligent computing [J]. Robotics and Mechatronics, 1996, 8(3), pp. 297–301.
[12] Fujii S., Ulyanov S.V. A model for motorcycle rider operation based on genetic algorithm [J]. Yamaha Motor Technical Review, 2004.
[13] Hagiwara T., Ulyanov S.V. An application of a smart control suspension system for a passenger car based on soft computing [J]. Yamaha Motor Technical Review, 2003.
[14] Ulyanov S.V. Intelligent self-organized robust control design based on quantum/soft computing technologies and Kansei Engineering. [J]. Computer Science J. of Moldova. – 2013. – Vol. 21, No 2(62). – Pp. 242 – 279.
[15] Ulyanov S.V. Self-organizing quantum robust control methods and systems for situations with uncertainty and risk [P]. - Patent US 8788450 B2, 2014.
[16] Litvintseva L. V., Ulyanov S. I., Ulyanov S. V., Ulyanov S. S. Kvantoviy nechetkiy vyvod dlya sozdanija baz znaniy v robastnih intellektualnyh regulyatorah [J]. Izvestiya RAN. Teoriya I sistemy upravlenija, 2007, no. 6, pp. 71-126.
[17] Litvintseva L. V., Ulyanov S. V. Intellektualnije sistemy upravlenija. Kvantovije vychislenija I algoritm samoorganizatsii [J]. Izvestiya RAN. Teoriya I sistemy upravlenija, 2009, no. 6, pp. 102-141.
[18] Nielsen M.A., Chang I.L. Quantum Computation and Quantum Information. Cambridge Univ. Press. UK, 2000.
[19] Ulyanov S. V., Sorokin S. V., Litvintseva L. V. Optimizator baz znaniy na osnove kvantovyh vychislenij dlya proektirovanija samoorganizujuschihsja nechetkih reguljatorov: programmnyj instrumentarij [J]. Sistemnyj analiz v nauke I obrazovanii [System analyze in sience and education], 2012, no. 1
[20] A.J. van der Schaft. Theory of port-Hamiltonian systems (Lectures 1, 2, and 3), Network Modeling and Control of Physical Systems. DISC, 2005.
[21] Ulyanov S.V. “Self-organized control system,” US patent, No. 6, 411, 944, 1997; see also “Self-organization fuzzy chaos intelligent controller for robotic unicycle: A new benchmark in AI control,” Proceedings 5th Intelligent System Symposium, Tokyo, Sep. 29 -30, 1995, pp.41 – 46.
[22] Haddad W. M., Chellaboina V., Nersesov S. G. Thermodynamics: A Dynamical Systems Approach, Princeton Series in Applied Mathematics Princeton. NJ: Princeton University Press, 2005.
[23] Ulyanov S.V. “System and method for stochastic simulation of nonlinear dynamic systems with high degree of freedom for soft computing application,” US patent, No 0039555 A1, Pub. Date: Feb. 26, 2004.
[24] Demetriusa L. Manke T. Robustness and network evolution — an entropic principle. Physica, 2005, Vol. A346, pp. 682–696.
[25] Ulyanov S.V., Litvintseva L.V. Design of self-organized intelligent control system based on quantum fuzzy inference: Intelligent system of systems engineering approach [R]. Proc. of IEEE int. conf. on system, man and cybernetics (SMC’2005). Hawai, USA, vol. 4.
[26] Reshetnikov A.G., Ulyanov S.V. Knowledge extract method from physically measured teaching signal: knowledge base design for fuzzy controller. Sistemnyy analiz v nauke i obrazovanii [System analyze in sience and education]. 2013, vol. 1.
[27] Zurek W.H. Probabilities from entanglement, Born’s rule from envariance. Phys. Review, 2005, vol. A71, no. 5.
[28] Goldenblat I.I., Ulyanov S.V. Introdaction to relativity theory and its applications to a new technique. Moscow, Fizmatgiz Publ., 1979.
[29] Petrov B.N., Ulanov G.M., Ulyanov S.V. Control problems of relativistic and quantum dynamic systems. Moscow, Nauka Publ., 1982.
[30] Li Y., Ang K.H., Chong G.C.Y. Patents, software and hardware for PID control: an overview and analysis of the current art. IEEE Control Syst. Mag, 2006, vol. 26, no. 1, pp. 42–54.
[31] Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. – Cambridge Univ. Press, UK, 2000.
[32] Marinescu D.C., Marinescu G.M. Approaching quantum computing. Pearson Prentice Hall, USA, 2005.
[33] Ulyanov S.V., Litvintseva L.V., Ulyanov S.S. et all. Quantum information and quantum computational intelligence: Backgrounds and applied toolkit of information design technologies. Milan: Note del Polo (Ricerca), Universita degli Studi di Milano, 2005, Vols 78-86.
[34] Ulyanov S.V., Litvintseva L.V., Ulyanov S.S. et all. Self-organization principle and robust wise control design based on quantum fuzzy inference [R]. Proc. of Internat. Conf. ICSCCW’2005, Antalya. Turkey, 2005.
[35] Litvintseva L.V., Ulyanov S.V., Takahashi K. et all. Design of self-organized robust wise control systems based on quantum fuzzy inference [R] Proc. of World Automation Congress (WAC’2006): Soft computing with Industrial Applications (ISSCI’2006). Budapest, Hungary, 2006, vol. 5.
[36] Litvintseva L.V., Ulyanov S.V., Ulyanov S.S. Postroenije robastnih baz znanij nechetkih regulyatorov dlya intellektual’nogo upravlenija suschestvenno nelinejnymi dinamicheskimy sistemamy [J]. Izvestiya RAN. Teoriya I sistemy upravlenija, 2006, no. 5.
[37] Nikolaeva A. V., Ulyanov S. V. Proektirovanije intellectual’noj sistemy upravlenija robotom manipulyatorom. Ch. 3: Modelirovanije I fizicheskij eksperiment na osnove tehnologii kvantovyh vychislenij [J]. Sistemnyy analiz v nauke i obrazovanii [System analysis in sience and education], 2013, no. 1.
[38] Ulyanov S. V., Litvintseva L.V., Mishin A. A., Sorokin S. V. Kvantovyj optimizator robastnyh baz znanij dlya proektirovanija intellektual’nyh system upravlenija: RF patent №2011616869. Pub. Date 5.09.2011 (Russia).
[39] Tarasov V. B. Ot mnogoagentnyh system k intellektul’nym organisatsyjam. Moscow, 2002, p. 352.
[40] Lebedev B. K., Lebedev V. B. Planirovanije na osnove roevogo intellekta I geneticheskoj evolutsyi [J]. Izvestija Juzhnogo federal’nogo universiteta, 2009, vol. 93, no. 4.
[41] Ulyanov S. V., Reshetnikov A. G. Synergetics of information-cognitive interaction in intelligent robotic systems with remote knowledge exchange [J]. Programmnije produkti i sistemy, 2017, no. 4, pp. 593-600.
[42] Nemkov R. M. Razrabotka nejrosetevikh algoritmov invariantnogo raspoznavaniya obrazov: dissertatsiya kandidata tehnicheskich nauk [Development of neural network algorithms for invariant pattern recognition: dissertation of the candidate of technical sciences: 05.13.18]. Stavropol’, 2015, 162 p.
[43] Haykin S.. Nejronnije seti: polnij kurs [Neural networks: full course]. Moscow, 2008, pp.113, 281-330.
[44] Gonzalez R. Tsifrovaya obrabotka izobrazhenij [Digital image processing]. Moscow, 2012, 1104 p.
[45] Ranzato M. A., Jarrett K., Kavukcuoglu K., LeCun Y. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
[46] Richard S. Sutton. Obuchenije s podkreplenijem [Reinforcement training]. Moscow, 2011, 399 p.
[47] Ackley D. H., Hinton G. E., Sejnowski T. J. A learning algorithm for Boltzmann machines. Cognitive Science, 1985, vol. 9, pp. 147-169.
[48] Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009, vol. 2, issue 1, pp. 1-127.
[49] Ciresan D., Meier U., Schmidhuber J. Multicolumn Deep Neural Networks for Image Classification [R]. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR '12, pp.3642-3649, Washington, DC, USA, 2012. IEEE ComputerSociety.
[50] Ranzato M., Huang F., Boureau Y., LeCun Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition [R]. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR’07), IEEE Press, 2007.
[51] Gill F. Prakticheskaya optimizatsiya [Practical optimization]. Moscow, 1985, 509 p.
[52] Izmajlov A. F. Chislennije metody optimizatsii [Numerical optimization methods]. Moscow, 2005, 304 p.
[53] Tarkhov D. A. Nejrosetevije modeli i algoritmy [Neural network models and algorithms]. Moscow, 2014, 352 p.
[54] Sergey Ulyanov, Andrey Reshetnikov, Nikita Ryabov. Deep machine learning and pattern/face recognition based on quantum neural networks and quantum genetic algorithm [R]. DISTRIBUTED COMPUTING AND GRIDTECHNOLOGIES IN SCIENCE AND EDUCATION. Book of abstract of the 8th International Conference Dubna, 10 – 14 September, 2018, pp. 38.
[55] Ulyanov S. V., Petrov S. P. Kvantovoe raspoznavanije lits i kvantovaja visual’naja kriptografija: modeli i algoritmi [J]. Sistemnyy analiz v nauke i obrazovanii [System analyze in sience and education], 2012, no.1.
[56] Zahra Beheshti, Siti Zaiton Mohd Hashim. A Review of Emotional Learning and It’s Utilization in Control Engineering. Int. J. Advance. Soft Comput. Appl., vol. 2, no. 2, 2010, pp. 191-208.
[57] Klecker S. Robotic Trajectory Tracking: Position- and Force-Control: PhD dissertation (Sciences de l’ingénieur). Université du Luxembourg, Luxembourg, 2019, 122 p.
[58] Kerenidis I., Landman J., Prakash A. Quantum Algorithms for Deep Convolutional Neural Networks. Universit´e Paris Diderot, Paris, France, 2019, 40 p.
[59] Junhua Liu, Kwan Hui Lim, Kristin L. Wood, Wei Huang, Chu Guo, He-Liang Huang. Hybrid Quantum-Classical Convolutional Neural Networks. Quantum Intelligence Lab, Supremacy Future Technologies, Guangzhou, China, 2019, 5 p.
[60] Ryo Asaka, Kazumitsu Sakai, Ryoko Yahagi. Quantum Circuit for the Fast Fourier Transform. Department of Physics, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, Japan, 2019, 16 p.