Thermo-oxidative Oligomerization of Aromatic Diamine


  • B. А. Zaitsev Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg, 199004, Russia
  • L. G. Kleptsova Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg, 199004, Russia
  • I. D. Shvabskaya Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg, 199004, Russia
  • А.E. Bursian Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg, 199004, Russia



Molecular spectroscopy (electronic, FT-IR, NMR), methods of thermal and elemental analysis were used for the first time to describe the process of thermo-oxidative oligomerization of 1,3-bis-(4-aminophenoxy)benzene. Introduction of this monomer into linear and network copolymers makes it possible to improve processability, mechanical strength and heat resistance of materials. The structures of copolymers obtained by thermo-oxidation of the diamine in various thermal regimes were studied. It was demonstrated that during prolonged heating of this diamine in air in the temperature range from 220 to 320°C, oligomeric aromatic diamines were formed; these products contained fragments of benzenoid and quinoid types.


Aromatic diamines, Oxidative oligomerization, Thermal properties, Molecular spectroscopy


[1] Ghosh M.K., Mittal K.L. Polyimides Fundamentals and Applications. New York: Marcel Dekker Inc., 1996. 891P.

[2] High Performance Polymers—Polyimides Based— From Chemistry to Applications (ed. M. J. M. Abadie). Rijeka.: InTech, 2012. 244 P.

[3] Handbook of composites /ed. G. Lubin. New York. etc.: Van Nostrand Reinhold Co, 1982. 786 P.

[4] Buhler K.U. Spezialplaste. Berlin: Akademie-Verlag, 1978.

[5] Chemistry and Technology of Epoxy Resins / ed. B. Ellis. Dordrecht: Springer Science+Business Media, 1993.

[6] Siddiqi H.M., Afzal A., Sajid S., Akhter Z. Synthesis, characterization and thermal oxidative stability of rigid epoxy polymers cured from aromatic monoand di-amines. // J. Polym. Res. 2013, V.20, N 41.

[7] Förster P., Hauschildt K. R., Wilhelm D. The effect of different hardeners on the ageing of crosslinked epoxy resins. // Makromol. Chem. Macromol. Symp.,1991,V. 41, N 1, P.141-151.

[8] Pospigil J. Aromatic and Heterocyclic Amines in Polymer Stabilization In: POLYMER, 2005, V. 124, part of Adv. Polym. Sci., P. 87-189.

[9] Graham, M. J. Synthesis and characterization of wholly aromatic semicrystalline polyimides based upon bis(4-aminophenoxy) benzenes. PHD Dissertation,- January,1999.Blacksburg,Virginia. P. 156., 185 P.

[10] Chao M., Kou K.C., Wang Z.C., Wu G.L., Zhang D.N., Zhang J.Q. Synthesis and characterization of polyimides derived from novel 1, 3-bis (4-aminophenoxy) benzene. // Adv. Mater. Res. 2011, V. 199-200, P. 13-18.

[11] Ratta V., Ayambem A., McGrath J.E., Wilkes G.L. Crystallization and multiple melting behavior of a new semicrystalline polyimide based on 1,3-bis(4-aminophenoxy)benzene (TPER) and 3,3′,4,4′-biphenonetetracarboxylic dianhydride(BTDA). // Polymer. 2001, V. 42, N14, P. 6173-6186.

[12] Zhang H., Wang W., Chen G., Zhang A., Fang X. Melt-Processable Semicrystalline Polyimides Based on 1,4-Bis(3,4-dicarboxyphenoxy)benzene Dianhydride (HQDPA). Synthesis, Crystallization, and Melting Behavior. // Polymer. 2017, V. 9, N 9, 420 (P. 1-17).

[13] Chao M. Synthesis and Characterization of Semicrystalline Polyimides Containing Bridged Linkages. // Int. J. Polym. Sci. 2018, V. 2018, Article ID 8590567.

[14] Zaitsev B. A., Shvabskaya I. D., Kleptsova L.G. Novel polycondensation method of improving high-temperature properties of microheterogeneous rolivsan copolymers modified by inserting epoxy and imide bridges between spherical microdomains. // High Perform. Polym. 2017, V. 29, P. 636–645.

[15] Zaitsev B. A., Shvabskaya I. D., Kleptsova L.G. High-Temperature transformations of aromatic diamines in the rolivsan matrix. // Russ. J. Appl. Chem., 2017, V. 90, № 6, P. 946−955.

[16] Zaitsev B. A. Combination of polymerization and polycondensation in the synthesis, chemical modification, and cure of rolivsan thermosetting resins. // High Perform. Polym. 2018, V. 30, P. 211–223.

[17] Zaitsev B.A., Kleptova L.G., Shvabskaya I.D. Studies of formation mechanism, structure and properties of network copolymers obtained by co-curing of rolivsan thermosetting resins with aromatic diamines. // Int. J. Polym. Sci. 2019, V. 2019, Article ID 1601236 (P. 1-15).

[18] H.A. Matnishyan, T.L. Hakhnazaryan. Oxidative Polycondensation of Aromatic Amines. Polymer Science, series A, 2004, Vol. 46, No. 12, p. 1220-1227.

[19] Mezhuev Y.O., Korshak Yu.V., Shtil’man M. I., Koledenkov A.A. Kinetic model of oxidative polymerization of aniline. Advances in chemistry and chemical technology . - 2008. - T. 22, No. 5. - P. 39–43.

[20] A.A. Koledenkov, Ya.O. Mezhuev, D.V. Tkachenko The mechanism of oxidative polymerization of p-phenylenediamine. Advances in chemistry and chemical technology. - 2010. - T. 24, No. 4. - P. 44–47.

[21] Bellamy L.J. The Infra-Red Spectra of Complex Molecules. 2nd ed. New York: John Wiley & Sons, Inc., 1958.

[22] Xin-Gui Li, Mei-Rong Huang, Wei Duan, Yu-Liang Yang. Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chem. Revs. 2002, V. 102, N. 9, P. 2925-3030.

[23] Chemical book, Aniline(62-53-3), 13C NMRwww.

[24] Ni S., Tang J., Wang F., Shen L. 13C n.m.r, characterization of soluble polyaniline // Polymer. 1992, V. 33, N.17, P. 3607-3610.

[25] Hjertberg, T., Salaneck, W. R., Lundstrrm, I., Somasiri, N. L. D., MacDiarmid, A. G. J. A 13C CPMAS NMR investigation of polyaniline. // Journal of Polymer Science: Polymer Letters Edition, 1985, V. 23, 503-508.

[26] Zaitsev B.A., Kleptsova L.G., Shvabskaya I.D. Heat-Resistant Network Copolymers Based on Rolivsans Modified with Aromatic Diamines. Russ. J. Appl. Chem. 2017, V. 90, N 3, P. 406−413.

[27] Moon D.K., Osakada K., Maruyama T., Yamamoto T. Preparation of polyaniline by oxidation of aniline using H2O2 in the presence of an iron (I1) catalyst. Makromol. Chem. 1992, V. 193, P. 1723 -1728.

[28] Nielsen, A.T. Nitrocarbons. Weinheim: Wiley-VCH. 1995.

[29] Kumar S., Nanak G. Organic Chemistry. Spectroscopy of Organic Compounds. Amritsar: Dev University, 2006.

[30] Kapelle S., Rettig W., Lapouyade R. Aniline dimers and trimers as model compounds for polyaniline. // Chem. Phys. Lett. 2001, V.348, N 5-6, P. 416-424.

[31] Bogomolova O.A., Sergeyev V.G. Acid Doping of Phenyl-Capped Aniline Dimer: Intermolecular Polaron Formation Mechanism and Its Applicability to Polyaniline. // J. Phys. Chem. A 2018, V. 122, N 2, P. 461–469.

[32] Gizdavic-Nikolaidis M.R., Zujovic Z.D., Ray S., allan j. Easteal A.J., Bowmaker G.A. Chemical Synthesis and Characterization of Poly(aniline-co-ethyl 3-aminobenzoate) Copolymers. // J. Polym. Sci., Polym. Chem. Part. A. 2010, V. 48, N 6, P. 1339-1347.

[33] Gong J., Cui X.-J., Chen Y.-G., Xie Z.-W., Qu L.-Y. UVVis Spectra of N, N ‘-Bis(4’-Aminophenyl)-1,4-quinonenediimine Doped with H4SiW12O40 // Macromolecular Research 2004. V. 12, N. 1, P. 22-25.

[34] Gupta K., Jana P. C., Meikap A. K. Synthesis, electrical transport and optical properties of polyaniline-zirconium nanocomposite. // J. Appl. Phys. 2011, V. 109, P. 123713.


How to Cite

Zaitsev B. А., Kleptsova, L. G., Shvabskaya, I. D., & Bursian А. (2021). Thermo-oxidative Oligomerization of Aromatic Diamine. Organic Polymer Material Research, 3(1), 24–31.


Article Type