-
16865
-
5630
-
825
-
735
-
717
Cyclopentadithiophene-based Conjugated Polymers for Organic Thermoelectric Devices and Other Applications
DOI:
https://doi.org/10.30564/opmr.v5i2.6069Abstract
The 4H-cyclopenta[2,1-b:3,4-b’]dithiophene (CPDT)-based conjugated polymers (CPs) have garnered significant attention in various fields of organic electronics due to their strong electron-donating properties, extended π-plane, and rigid, planar chemical structure. These unique features enable CPDT-based CPs to be highly advantageous for use in a range of organic semiconductor devices. While CPDT-based CPs have been extensively investigated and utilized as electron donors in various organic semiconductor devices, there is limited literature discussing the electrochemical properties of CPDT building blocks and the representative examples of CPDT-based CPs. In this mini-review, the authors outline the electrochemical properties of the CPDT building block, which stem from its rigid and planar chemical structure, facilitating the use of CPDT derivative materials in the field of organic semiconductors, such as organic photovoltaics (OPVs), organic thin film transistors (OTFTs), and organic photodetectors (OPDs). Furthermore, the authors highlight the advantages of CPDT-based CPs, particularly, for organic thermoelectric applications (OTEs) such as strong electron-donating properties and extended π-conjugation, which lead to facile p-type doping characteristics in CPDT-based CPs. The authors discuss the basic working principles of OTEs, including several key parameters of OTE devices such as the Seebeck coefficient (S) and power factor (PF). Additionally, the authors address the main challenge in OTEs: the trade-off relationship between electrical conductivity and the Seebeck coefficient. The review presents several strategies to overcome these trade-off limitations, focusing on CPDT and other CPs for OTE applications.
Keywords:
Organic semiconductors; Conducting polymers; Doping; Quinoid; Seebeck effect; Power factorReferences
[1] Jeong, B.H., Park, J., Kim, D., et al., 2023. Visible light-sensitive artificial photonic synapse. Advanced Optical Materials. 2301652. DOI: https://doi.org/10.1002/adom.202301652
[2] Jeong, W., Kang, J., Lee, D., et al., 2023. Development of high-performance organic photodetectors by understanding origin of dark current density with synthesis of photoconductive polymers. Chemical Engineering Journal. 473, 145178. DOI: https://doi.org/10.1016/j.cej.2023.145178
[3] Kim, H., Kang, J., Park, J., et al., 2022. All-polymer photodetectors with n-type polymers having nonconjugated spacers for dark current density reduction. Macromolecules. 55(21), 9489-9501. DOI: https://doi.org/10.1021/acs.macromol.2c01769
[4] Kim, M.I., Kang, J., Park, J., et al., 2022. Improvement of dynamic performance and detectivity in near-infrared colloidal quantum dot photodetectors by incorporating conjugated polymers. Molecules. 27(21), 7660. DOI: https://doi.org/10.3390/molecules27217660
[5] Kim, J., Suh, E.H., Lee, K., et al., 2023. Development of alkylthiazole-based novel thermoelectric conjugated polymers for facile organic doping. Nanomaterials. 13(7), 1286. DOI: https://doi.org/10.3390/nano13071286
[6] Jeong, W., Lee, K., Jang, J., et al., 2023. Development of benzobisoxazole-based novel conjugated polymers for organic thin-film transistors. Polymers. 15(5), 1156. DOI: https://doi.org/10.3390/polym15051156
[7] Luo, Y., 2023. Powering the future: Hydrogel-based soft ionic conductors energize flexible and wearable triboelectric nanogenerators. Organic Polymer Material Research. 5(1), 12-14. DOI: https://doi.org/10.30564/opmr.v5i1.5818
[8] Sabah, F.A., 2021. Organic polymer materials for light emitting diode applications. Organic Polymer Material Research. 3(2), 24-25. DOI: https://doi.org/10.30564/opmr.v3i2.4348
[9] Chakraborty, S., Chatterjee, R., Bandyopadhyay, A., 2022. A brief review on fundamentals of conductive polymer (CPs). Organic Polymer Material Research. 4(1), 1-11. DOI: https://doi.org/10.30564/opmr.v4i1.4395
[10] Chiang, C.K., Park, Y.W., Heeger, A.J., et al., 1978. Conducting polymers: Halogen doped polyacetylene. The Journal of Chemical Physics. 69(11), 5098-5104. DOI: https://doi.org/10.1063/1.436503
[11] Dittmer, J.J., Petritsch, K., Marseglia, E.A., et al., 1999. Photovoltaic properties of MEH-PPV/PPEI blend devices. Synthetic Metals. 102(1-3), 879-880. DOI: https://doi.org/10.1016/S0379-6779(98)00852-2
[12] Li, J., Dierschke, F., Wu, J., et al., 2006. Poly(2, 7-carbazole) and perylene tetracarboxydiimide: A promising donor/acceptor pair for polymer solar cells. Journal of Materials Chemistry. 16(1), 96-100. DOI: https://doi.org/10.1039/B512373A
[13] Zhu, D., Ji, D., Li, L., et al., 2022. Recent progress in polymer-based infrared photodetectors. Journal of Materials Chemistry C. 10, 13312-13323. DOI: https://doi.org/10.1039/D2TC00646D
[14] Coppo, P., Turner, M.L., 2005. Cyclopentadithiophene based electroactive materials. Journal of Materials Chemistry. 15(11), 1123-1133. DOI: https://doi.org/10.1039/B412143K
[15] Burrezo, P.M., Domínguez, R., Zafra, J.L., et al., 2017. Oligomers of cyclopentadithiophene-vinylene in aromatic and quinoidal versions and redox species with intermediate forms. Chemical Science. 8(12), 8106-8114. DOI: https://doi.org/10.1039/C7SC02756G
[16] Scharber, M.C., Sariciftci, N.S., 2021. Low band gap conjugated semiconducting polymers. Advanced Materials Technologies. 6(4), 2000857. DOI: https://doi.org/10.1002/admt.202000857
[17] Yoo, H., Sung, M., Ahn, H., et al., 2023. Ambipolar charge transport in p-type cyclopentadithiophene-based polymer semiconductors enabled by D-A-A-D configuration. Chemistry of Materials. 35(22), 9562-9571. DOI: https://doi.org/10.1021/acs.chemmater.3c01570
[18] Bhat, G., Kielar, M., Sah, P., et al., 2023. Solution-processed ternary organic photodetectors with ambipolar small-bandgap polymer for near-infrared sensing. Advanced Electronic Materials. 2300583. DOI: https://doi.org/10.1002/aelm.202300583
[19] Song, J., Lu, H., Liu, M., et al., 2023. Dopant enhanced conjugated polymer thin film for low-power, flexible and wearable DMMP sensor. Small. 2308595. DOI: https://doi.org/10.1002/smll.202308595
[20] Tsai, C.H., Lin, Y.C., Wu, W.N., et al., 2023. Optimizing the doping efficiency and thermoelectric properties of isoindigo-based conjugated polymers using side chain engineering. Journal of Materials Chemistry C. 11(21), 6874-6883. DOI: https://doi.org/10.1039/D3TC00883E
[21] Cheon, H.J., Lee, T.S., Lee, J.E., et al., 2023. Design of donor-acceptor polymer semiconductors for optimizing combinations with dopants to maximize thermoelectric performance. Chemistry of Materials. 35(4), 1796-1805. DOI: https://doi.org/10.1021/acs.chemmater.2c03739
[22] Al-Azzawi, A.G., Aziz, S.B., Dannoun, E.M., et al., 2022. A mini review on the development of conjugated polymers: Steps towards the commercialization of organic solar cells. Polymers. 15(1), 164. DOI: https://doi.org/10.3390/polym15010164
[23] Lan, Y.K., Huang, C.I., 2008. A theoretical study of the charge transfer behavior of the highly regioregular poly-3-hexylthiophene in the ordered state. The Journal of Physical Chemistry B. 112(47), 14857-14862. DOI: https://doi.org/10.1021/jp806967x
[24] Kim, H., Kang, J., Ahn, H., et al., 2022. Contribution of dark current density to the photodetecting properties of thieno [3, 4-b] pyrazine-based low bandgap polymers. Dyes and Pigments. 197, 109910. DOI: https://doi.org/10.1016/j.dyepig.2021.109910
[25] Sharma, B., Sarothia, Y., Singh, R., et al., 2016. Synthesis and characterization of light-absorbing cyclopentadithiophene-based donor-acceptor copolymers. Polymer International. 65(1), 57-65. DOI: https://doi.org/10.1002/pi.5024
[26] Kraak, A., Wiersema, A.K., Jordens, P., et al., 1968. The synthesis of cyclopentadithiophenes. Tetrahedron. 24(8), 3381-3398. DOI: https://doi.org/10.1016/S0040-4020(01)92636-5
[27] Lee, K., Jeong, M.K., Suh, E.H., et al., 2022. Rational design of highly soluble and crystalline conjugated polymers for high-performance field-effect transistors. Advanced Electronic Materials. 8(5), 2101105. DOI: https://doi.org/10.1002/aelm.202101105
[28] Wang, H., Yang, Y., Zhang, Y., et al., 2023. p-π conjugated polyelectrolytes toward universal electrode interlayer materials for diverse optoelectronic devices. Advanced Functional Materials. 33(15), 2213914. DOI: https://doi.org/10.1002/adfm.202213914
[29] Yoon, J.W., Bae, H., Yang, J., et al., 2023. Semitransparent organic solar cells with light utilization efficiency of 4% using fused-cyclopentadithiophene based near-infrared polymer donor. Chemical Engineering Journal. 452, 139423. DOI: https://doi.org/10.1016/j.cej.2022.139423
[30] Yang, J., Pu, Y., Yu, H., et al., 2023. A cross-plane design for wearable thermoelectric generators with high stretchability and output performance. Small. 19(45), 2304529. DOI: https://doi.org/10.1002/smll.202304529
[31] Srivastava, G.P., 2022. The physics of phonons. CRC Press: Boca Raton.
[32] Hao, Q., Garg, J., 2021. A review on phonon transport within polycrystalline materials. ES Materials & Manufacturing. 14, 36-50. DOI: https://dx.doi.org/10.30919/esmm5f480
[33] Guo, Y., Ruan, K., Shi, X., et al., 2020. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology. 193, 108134. DOI: https://doi.org/10.1016/j.compscitech.2020.108134
[34] Cutler, M., Leavy, J.F., Fitzpatrick, R.L., 1964. Electronic transport in semimetallic cerium sulfide. Physical Review. 133(4A), A1143. DOI: https://doi.org/10.1103/PhysRev.133
[35] A1143 Suh, E.H., Jeong, M.K., Lee, K., et al., 2021. Solution-state doping-assisted molecular ordering and enhanced thermoelectric properties of an amorphous polymer. International Journal of Energy Research. 45(15), 21540-21551. DOI: https://doi.org/10.1002/er.7266
[36] He, Q., Wang, J., Dexter Tam, T.L., et al., 2023. Thermoelectric performance enhancement of p-type Pyrrolo [3, 2-b: 4, 5-b’] bis [1, 4] benzothiazine conjugated ladder polymer by pendant group engineering. ACS Materials Letters. 5(10), 2829-2835. DOI: https://doi.org/10.1021/acsmaterialslett.3c00758
[37] Ma, W., Shi, K., Wu, Y., et al., 2016. Enhanced molecular packing of a conjugated polymer with high organic thermoelectric power factor. ACS Applied Materials & İnterfaces. 8(37), 24737-24743. DOI: https://doi.org/10.1021/acsami.6b06899
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2023 Author(s)
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.