Prioritizing Watersheds for Intervention Design Using GIS and Remote Sensing
DOI:
https://doi.org/10.30564/jees.v7i1.6887Abstract
In many developing countries with poorly managed landscapes, soil erosion threatens the sustainability of water bodies. The main limitations of this study are the lack of daily sediment data, lithology, higher-resolution DEM data, and socioeconomic factors. Poor land use policy and resource management in the Upper Awash Sub-basin lead to soil erosion and sedimentation of hydrological infrastructure, Effective watershed prioritization requires integrating land use, hydrology, sediment load, and morphometric factors but often faces gaps, especially in the study area. This research aims to prioritise the Upper Awash Sub-Basin by its morphometric, land use and cover (LULC), and sediment yield characteristics. We used the integrated AHP-VIKOR multi-attribute decision-making method to prioritise watersheds, incorporating morphometry, LULC, and sediment load attributes in the simple matrix approach. The findings showed the following classes of erosion: exceedingly high (2722.14 km2), high (2524.46 km2), moderate (2205.48 km2), low (1611.43 km2), and extremely low (854.35 km2). Sub-watersheds WS6, WS8, WS10, WS13, and WS24 are the top priority for watershed management. The study ranked watersheds based on various attributes but encountered limitations such as the lack of daily sediment data, geological structure, and lithology. It can be concluded that this approach is very important to identify and categorize hotspots of soil erosion sub-watersheds for planners and decision-makers for conserving water and soil and for different environmental management purposes.
Keywords:
Morphometric Analysis; Soil Erosion; MCDM; VIKOR; AHP; SWATReferences
[1] Morris, B.G.L., Fan, J., 1997. Reservoir sedimentation handbook—design and management of dams, reservoirs, and watershed for sustainable use. McGraw-Hill: New York, NY, USA. pp. 481–482.
[2] Adhami, M., Sadeghi, S.H., 2016. Sub-watershed prioritization based on sediment yield using game theory. Journal of Hydrology. 541(Part B), 977–987. DOI: https://doi.org/10.1016/j.jhydrol.2016.08.008
[3] Assegide, E., , Shiferaw, H., Tibebe, D., et al., 2023. Spatiotemporal dynamics of water quality indicators in Koka Reservoir, Ethiopia. Remote Sensing. 15(4), 1155. DOI: https://doi.org/10.3390/rs15041155
[4] Abhachire, L.W., 2014. Studies on hydrobiological features of Koka Reservoir and Awash River in Ethiopia. International Journal of Fisheries and Aquatic Studies. 1(3), 158–162. Available from: www.fisheriesjournal.com
[5] Girma, K., 2016. The state of freshwaters in Ethiopia. In Freshwater. Mount Holyoke College: South Hadley, MA, USA, pp. 137–188.
[6] Argaw, M., Yohannes, H., 2024. Impact of land use/land cover changes on surface water and soil-sediment export in the urbanized Akaki River catchment, Awash Basin, Ethiopia. Journal of Hydrology: Regional Studies. 52, 101677. DOI: https://doi.org/10.1016/j.ejrh.2024.101677
[7] Getaneh, Y., Abera, W., Abegaz, A., et al., 2022. A systematic review of studies on freshwater lakes of Ethiopia. Journal of Hydrology: Regional Studies. 44, 101250. DOI: https://doi.org/10.1016/j.ejrh.2022.101250
[8] Assegide, T., Alamirew, Y.T. Dile, H., et al., 2022. A Synthesis of Surface Water Quality in Awash Basin, Ethiopia. Frontiers in Water. 4, pp. 1–17. DOI: https://doi.org/10.3389/frwa.2022.782124
[9] Desta, L.T., 2005. Reservoir siltation in Ethiopia: Causes, source areas, and management options. Cuvillier Verlag: Göttingen, Germany. pp. 1960–2010. Available from: https://www.zef.de/fileadmin/webfiles/downloads/zefc_ecology_development/ecol_dev_30_text.pdf
[10] Hurni, H., 1993. Land degradation, famine, and land resource scenarios in Ethiopia. In: Pimentel, D. (ed.). World Soil Erosion and Conservation. Cambridge University Press: Cambridge, UK. pp. 27–61. Available from: https://www.researchgate.net/publication/279605109_Land_degradation_famine_and_land_resource_scenarios_in_Ethiopia#fullTextFileContent
[11] Verstraeten, G., Poesen, J., de Vente, J., et al., 2003. Sediment yield variability in Spain: A quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology. 50(4), 327–348, DOI: https://doi.org/10.1016/S0169-555X(02)00220-9
[12] Tullu, K.T., 2024. Assessment of soil erosion response to climate change in the Sululta catchment, Abbay Basin, Ethiopia. H2 Open Journal. 7(1), 1–37. DOI: https://doi.org/10.2166/h2oj.2023.083
[13] Zhang, X., He, J., Deng, Z., et al., 2018. Comparative changes of influence factors of rural residential area based on spatial econometric regression model: A case study of Lishan Township, Hubei Province, China. Sustainability. 10(10), 3403. DOI: https://doi.org/10.3390/su10103403
[14] Gantulga, N., Iimaa, T., Batmunkh , M., et al., 2023. Impacts of natural and anthropogenic factors on soil erosion. Proceedings of the Mongolian Academy of Sciences. 63(02), 3–18. DOI: https://doi.org/10.5564/pmas.v63i02.1416
[15] Wang, A., Zhang, M., Ren, B., et al., 2023. Ventilation analysis of urban functional zoning based on circuit model in Guangzhou in winter, China. Urban Climate. 47, 1–9. DOI: https://doi.org/10.1016/j.uclim.2022.101385
[16] ] De Boer, D.H., Crosby, G., 1996. Specific sediment yield and drainage basin scale. IAHS-AISH Publication. 236, 333–338.
[17] Schiefer, E., Slaymaker, O., Klinkenberg, B., 2001. Physiographically controlled allometry of specific sediment yield in the Canadian Cordillera: A lake sediment-based approach. Geografiska Annaler. 83(1–2), 55–65. DOI: https://doi.org/10.1111/j.0435-3676.2001.00144.x
[18] Houser, C., Hamilton, S., 2009. Sensitivity of post‐hurricane beach and dune recovery to event frequency. Earth Surface Processes and Landforms. 34(5), 613–628. DOI: https://doi.org/10.1002/esp.1730
[19] Rymbai, P.N., 2012. Estimation of sediment production rate of the Umbaniun Micro-watershed, Meghalaya, India. Journal of Geography and Regional Planning. 5(11), 293–297. DOI: https://doi.org/10.5897/jgrp11.032
[20] Tuppad, S., Shetty, G.R., Souravi, K., et al., 2017. Character association for fruit yield and yield traits in holostemma ada-kodien schult—A vulnerable medicinal plant. Indian Journal of Ecology. 44(2), 337–339.
[21] Biswas, S., Sudhakar, S., Desai, V.R., 1999. Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing. 27(3), 155–166. DOI: https://doi.org/10.1007/BF02991569
[22] Degfe, A., Tilahun, A., Bekele, Y., et al., 2023. Adoption of soil and water conservation technologies and its effects on soil properties: Evidences from Southwest Ethiopia. Heliyon. 9(7), e18332. DOI: https://doi.org/10.1016/j.heliyon.2023.e18332
[23] Shawul, A.A., Chakma, S., 2019. Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin, Ethiopia. Environmental Earth Sciences. 78(5), 1–13. DOI: https://doi.org/10.1007/s12665-019-8154-y
[24] Bekele, T., 2019. Effect of land use and land cover changes on soil erosion in Ethiopia. International Journal of Agricultural Science and Food Technology. 5, 26–34. DOI: https://doi.org/10.17352/2455-815x.000038
[25] Dewan, A.M., Yamaguchi, Y., 2009. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environmental Monitoring and Assessment. 150(1–4), 237–249. DOI: https://doi.org/10.1007/s10661-008-0226-5
[26] Wilson, E.H., Hurd, J.D., Civco, D.L., et al., 2003. Development of a geospatial model to quantify, describe and map urban growth. Remote Sensing of Environment. 86(3), 275–285. DOI: https://doi.org/10.1016/S0034-4257(03)00074-9
[27] Mitiku, A.B., Meresa, G.A., Mulu, T., et al., 2023. Examining the impacts of climate variabilities and land use change on hydrological responses of Awash River basin, Ethiopia. HydroResearch. 6, 16–28. DOI: https://doi.org/10.1016/j.hydres.2022.12.002
[28] Moges, A.S., Wondimagegn, S.A., Getahun, Y.S., 2024. Evaluate the effectiveness of soil and water conservation interventions in the upper Awash Basin, Ethiopia. World Water Policy. 10(1), 324–340. DOI: https://doi.org/10.1002/wwp2.12165
[29] Vaidyanathan, R.K., Ramaraj, M., 2021. Prioritization of sub-watersheds in the Arasalar-Palavar region using Sediment Production Rate (SPR). Indian Journal of Ecology. 48(4), 1005–1010.
[30] Ranjan, R., Jhariya, G., Jaiswal, R.K., 2013. Saaty's analytical hierarchical process based prioritization of sub-watersheds of Bina river basin using remote sensing and GIS. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS). 3, 36–55.
[31] Pandey, A., Chowdary, V.M., Mal, B.C., 2007. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour Manage. 21(4), 729–746. DOI: https://doi.org/10.1007/s11269-006-9061-z
[32] Beven, K., Wood, E., Sivapalan, M., 1998. Catchment morphology and hydrological processes are inextricably linked through the geomorphic processes of soil development, erosion and deposition. Water provides the major driving force in the development of morphology through its role as a transport. Journal of Hydrology. 100, 353–375.
[33] Duressa, A.A., Feyissa, T.A., Tukura, N.G., et al., 2024. Identification of soil erosion-prone areas for effective mitigation measures using a combined approach of morphometric analysis and geographical information system. Results in Engineering. 21, 101712. DOI: https://doi.org/10.1016/j.rineng.2023.101712
[34] Okoli, J., Nahazanan, H., Nahas, F., et al., 2023. high-resolution LIDAR-derived DEM for landslide susceptibility assessment using AHP and fuzzy logic in Serdang, Malaysia. Geosciences. 13(2), 34. DOI: https://doi.org/10.3390/geosciences13020034
[35] Saha, S., Gayen, A., Pourghasemi, H.R., et al., 2019. Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India. Environmental Earth Sciences. 78(23), 649. DOI: https://doi.org/10.1007/s12665-019-8658-5
[36] Sahour, H., Gholami, V., Vazifedan, M., et al., 2021. Machine learning applications for water-induced soil erosion modeling and mapping. Soil and Tillage Research. 211, 105032. DOI: https://doi.org/10.1016/j.still.2021.105032
[37] Abdeta, G.C., Tesemma, A.B., Tura, A.L., et al., 2020. Morphometric analysis for prioritizing sub-watersheds and management planning and practices in Gidabo Basin, Southern Rift Valley of Ethiopia. Applied Water Science. 10(7), 1–15. DOI: https://doi.org/10.1007/s13201-020-01239-7
[38] Meshram, S.G., Sharma, S.K., 2017. Prioritization of watershed through morphometric parameters: a PCA-based approach. Applied Water Science. 7(3), 1505–1519. DOI: https://doi.org/10.1007/s13201-015-0332-9
[39] Javed, A., Khanday, M.Y., Ahmed, R., 2009. Prioritization of sub-watersheds based on morphometric and land use analysis using Remote Sensing and GIS techniques. Journal of the Indian Society of Remote Sensing. 37(2), 261–274. DOI: https://doi.org/10.1007/s12524-009-0016-8
[40] Suji, V.R., Sheeja, R.V., Karuppasamy, S., 2015. Prioritization using morphometric analysis and land use/land cover parameters for Vazhichal watershed using remote sensing and GIS techniques. International Journal for Innovative Research in Science & Technology. 2(1), 61–68. Available from: ijirst.org/articles/IJIRSTV2I1013.pdf
[41] Shekar, P.R., Mathew, A., 2022. Morphometric analysis for prioritizing sub-watersheds of Murredu River basin, Telangana State, India, using a geographical information system. Journal of Engineering and Applied Science. 69(1), 1–30. DOI: https://doi.org/10.1186/s44147-022-00094-4
[42] Dabral, P.P., Baithuri, N., Pandey, A., 2008. Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resources Management. 22(12), 1783–1798. DOI: https://doi.org/10.1007/s11269-008-9253-9
[43] Opricovic, S., Tzeng, G.H., 2004. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research. 156(2), 445–455. DOI: https://doi.org/10.1016/S0377-2217(03)00020-1
[44] Huang, J.J., Tzeng, G.H., Liu, H.H., 2009. A revised vikor model for multiple criteria decision making - The perspective of regret theory. Communications in Computer and Information Science. 35, 761–768. DOI: https://doi.org/10.1007/978-3-642-02298-2_112
[45] Ameri, A., Pourghasemi, H., Cerda, A., 2018. Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Science of the Total Environment. 613–614, 1385–1400. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.210
[46] Kang, D., Park, Y., 2014. Review-based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach. Expert Systems with Applications. 41(4), 1041–1050. DOI: https://doi.org/10.1016/j.eswa.2013.07.101
[47] Mir, A.A., Ahmed, R., 2021. SWAT based prioritization of sub-watersheds in Pohru watershed of Jhelum basin, northwestern Himalayas. Research Journal of Agricultural Sciences. 12, 1308–1315. DOI: https://doi.org/10.5281/zenodo.5153487
[48] Tripathi, M.P., Panda, R.K., Raghuwanshi, N.S., 2003. Identification and prioritisation of critical sub-watersheds for soil conservation management using the SWAT model. Biosystems Engineering. 85(3), 365–379. DOI: https://doi.org/10.1016/S1537-5110(03)00066-7
[49] Mishra, A., Kar, S., Singh, V.P., 2007. Prioritizing structural management by quantifying the effect of land use and land cover on watershed runoff and sediment yield. Water Resources Management. 21(11), 1899–1913. DOI: https://doi.org/10.1007/s11269-006-9136-x
[50] Admas, B.F., Gashaw, T., Adem, A.A., et al., 2022. Identification of soil erosion hot-spot areas for prioritization of conservation measures using the SWAT model in Ribb watershed, Ethiopia. Resources, Environment and Sustainability. 8, 100059. DOI: https://doi.org/10.1016/j.resenv.2022.100059
[51] Dibaba, W.T., Demissie, T.A., Miegel, K., 2021. Prioritization of sub-watersheds to sediment yield and evaluation of best management practices in highland ethiopia, finchaa catchment. Land. 10(6), 650. DOI: https://doi.org/10.3390/land10060650
[52] Issaka, S., Ashraf, M.A., 2017. Impact of soil erosion and degradation on water quality: A review. Geology, Ecology, and Landscapes. 1(1), 1–11. DOI: https://doi.org/10.1080/24749508.2017.1301053
[53] Takele, L., Kebede, M., 2018. Streamflow modeling of Upper Awash River Basin using soil and water assessment tool. Applied Journal of Environmental Engineering Science. 4, 456–466.
[54] Mekonnen, T.M., Mitiku, A.B., Woldemichael, A.T., 2023. Flood hazard zoning of Upper Awash River Basin, Ethiopia, using the analytical hierarchy process (AHP) as compared to sensitivity analysis. The Scientific World Journal. 2023(2), 1-15. DOI: https://doi.org/10.1155/2023/1675634
[55] High, C.E., Vecchi, V.V., Valdarno, S.G., 2016. Assessment of gully erosion in the Upper Awash, Central Ethiopian highlands based on a comparison of archived aerial photographs and very high resolution satellite images. Physical Geography and Quaternary Dynamics. 39, 161–170.
[56] Salvini, R., Riccucci, S., Francioni, M., 2012. Topographic and geological mapping in the prehistoric area of Melka Kunture (Ethiopia). Journal of Maps. 8(2), 169–175. DOI: https://doi.org/10.1080/17445647.2012.680779
[57] Gallotti, R., 2013. An older origin for the Acheulean at Melka Kunture (Upper Awash, Ethiopia): Techno-economic behaviours at Garba IVD. Journal of Human Evolution. 65(5), 594–620. DOI: https://doi.org/10.1016/j.jhevol.2013.07.001
[58] Raynal, J., Kieffer, G., 2004. Lithology, dynamism and volcanic successions at Melka Kunture (Upper Awash, Ethiopia). In: Chavaillon, J., Piperno, M. (Eds.). Studies on the Early Paleolithic site of Melka Kunture, Ethiopia. Istituto Italiano di Preistoria e Protostoria: Rome, Italy. pp. 111–135. Available from: http://halshs.archives-ouvertes.fr/halshs-00003990/
[59] Tolera, M.B., Chung, I.M., Chang, S.W., 2018. Evaluation of the climate forecast system reanalysis weather data for watershed modeling in Upper Awash Basin, Ethiopia. Water (Switzerland). 10(6), 725. DOI: https://doi.org/10.3390/w10060725
[60] Moriasi, D.N., Arnold, J.G., Van Liew, M.W., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3), 885–900. DOI: https://doi.org/10.13031/2013.23153
[61] Veltman, K., Alan, R.C., Larry, C., et al., 2018. A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region. Agricultural Systems. 166, 10–25. DOI: https://doi.org/10.1016/j.agsy.2018.07.005
[62] Ali, S.A., Ikbal, J., 2015. Prioritization based on geomorphic characteristics of Ahar watershed, Udaipur district,Rajasthan, India using Remote Sensing and GIS. Journal of Environmental Research And Development. 10(1), 187-200. Available from: https://www.researchgate.net/publication/281856622_Prioritization_based_on_geomorphic_characteristics_of_Ahar_watershed_Udaipur_districtRajasthan_India_using_Remote_Sensing_and_GIS
[63] Jha, M., Gassman, P.W., Secchi, S., et al., 2004. Effect of watershed subdivision on swat flow, sediment, and nutrient predictions. Journal of the American Water Resources Association. 40(3), 811–825. DOI: https://doi.org/10.1111/j.1752-1688.2004.tb04460.x
[64] Arabi, M., Govindaraju, R.S., Hantush, M.M., et al., 2006. Role of watershed subdivision on modeling the effectiveness of best management practices With SWAT. Water Resources. 42(2), 513–528.
[65] Lin, B., Chen, X., Yao, H., 2020. Threshold of sub-watersheds for SWAT to simulate hillslope sediment generation and its spatial variations. Ecological Indicators. 111(8), 106040. DOI: https://doi.org/10.1016/j.ecolind.2019.106040
[66] Farhan, Y., Anbar, A., Enaba, O., et al., 2015. Quantitative analysis of geomorphometric parameters of Wadi Kerak, Jordan, using remote sensing and GIS. Journal of Water Resource and Protection. 7(6), 456–475. DOI: https://doi.org/10.4236/jwarp.2015.76037
[67] Rahaman, S.A., Ajeez, S.A., Aruchamy, S., et al., 2015. Prioritization of sub watershed based on morphometric characteristics using Fuzzy Analytical Hierarchy Process and Geographical Information System–A study of kallar watershed, Tamil Nadu. Aquatic Procedia. 4, 1322–1330. DOI: https://doi.org/10.1016/j.aqpro.2015.02.172
[68] Strahler, A.N., 1973. Geological society of America Bulletin. Geological Society Of America Bulletin. 11, 1117–1142. DOI: https://doi.org/10.1130/0016-7606(1952)63
[69] Horton, R.E., 1945. Erosional development of streams and their drainage basins, hydrophysical approach to quantitative morphology. Geological Society of America Bulletin. 37(12), 555–558. DOI: https://doi.org/10.1130/0016-7606(1945)56
[70] Schumm, S.A., 1956. Eevolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological society of America bulletin. 67(5), 597–646.
[71] Patton, P.C., Baker, V.R., 1976. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research. 12(5), 941–952. DOI: https://doi.org/10.1029/WR012i005p00941
[72] Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology, transactions of the American Geophysical Union. Transactions, American Geophysical Union. 38(6), 913–920.
[73] Horton, R.E., 1932. Drainage‐basin characteristics. Transactions American Geophysical Union. 13(1), 350–361. DOI: https://doi.org/10.1029/TR013i001p00350
[74] Smith, K.G., 1950. Standards for grading texture of erosional topography. American Journal of Science. 248, 655–668. DOI: https://doi.org/https://sci-hub.ru/https://doi.org/10.2475/ajs.248.9.655
[75] Schumm, S.A., 1963. Geological Society of America Bulletin sequences in the cratonic interior of North America. Geological Society of America Bulletin. 74(2), 93–114. DOI: https://doi.org/10.1130/0016-7606(1963)74
[76] Rai, P., Mishra, V.N., Mohan, K., 2017. A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment. 7, 9–20. DOI: https://doi.org/10.1016/j.rsase.2017.05.001
[77] Adu, J.T., Kumarasamy, M.V., 2018. Assessing non-point source pollution models: A review. Polish Journal of Environmental Studies. 27(5), 1913–1922. DOI: https://doi.org/10.15244/pjoes/76497
[78] Santhi, C., Arnold, J.G., Williams, J.R., et al., 2001. Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the ASAE. American Society of Agricultural Engineers. 44(76502), 1559–1570.
[79] Ganasri, B.P., 2015. A review on hydrological models. Aquatic Procedia. 4, 1001–1007. DOI: https://doi.org/10.1016/j.aqpro.2015.02.126
[80] Yang, Y.S., Wang, L., 2010. A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resources Management. 24(9), 1819–1843. DOI: https://doi.org/10.1007/s11269-009-9526-y
[81] Renard, K., Foster, G.R., Weesies, G., et al., 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook Number 703. Available from: https://www3.epa.gov/npdes/pubs/ruslech2.pdf (cited 24 January 2023).
[82] Arnold, J.G., Moriasi, D., Gassman, P., et al., 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE. 55(4), 1249–1260. DOI: https://doi.org/10.13031/2013.42256
[83] Winchell, M.F., Peranginangin, N., Srinivasan, R., et al., 2018. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds. Integrated Environmental Assessment and Management. 14(3), 358–368. DOI: https://doi.org/10.1002/ieam.2014
[84] Gholami, A., Habibnejad Roshan, M., Shahedi, K., et al., 2016. Hydrological stream flow modeling in the Talar catchment (central section of the Alborz Mountains, north of Iran): Parameterization and uncertainty analysis using SWAT-CUP. Journal of Water and Land Development. 30(1), 57–69. DOI: https://doi.org/10.1515/jwld-2016-0022
[85] Abbaspour, K.C., 2012. A package of calibration procedures linked to SWAT through a generic platform to perform calibration , validation , and uncertainty analysis SWAT-CUP. enviroGRIDS – FP7 European project. pp. 1–104. Available from: https://envirogrids.net/envirogrids_d4.5_calibration_swat_cupdfb0.pdf?option=com_jdownloads&Itemid=13&view=finish&cid=145&catid=13
[86] Abbaspour, K.C., Yang, J., Maximov, I., et al., 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology. 333(2–4), 413–430. DOI: https://doi.org/10.1016/j.jhydrol.2006.09.014
[87] Im, S., Brannan, K.M., Mostaghimi, S., et al., 2007. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction. Journal of Environmental Science and Health. 42(11), 1561–1570. DOI: https://doi.org/10.1080/10934520701513456
[88] Sasanka, C.T., Ravindra, K., 2015. Implementation of VIKOR method for selection of magnesium alloy to suit automotive applications. International Journal of Advanced Science and Technology. 83, 49–58. DOI: https://doi.org/10.14257/ijast.2015.83.05
[89] Wang, C., Pang, C., 2011. Using VIKOR method for evaluating service quality of online auction under fuzzy environment. IJCSET. 1(6), 307–314.
[90] Xue, M., Tang, X., Feng, N., 2016. An extended VIKOR method for multiple attribute decision analysis with bidimensional dual hesitant fuzzy information. Mathematical Problems in Engineering. 2016(1), 16. DOI: https://doi.org/10.1155/2016/4274690
[91] Pant, S., Kumar, A., Ram, M., et al., 2022. Consistency indices in analytic hierarchy process: A review. Mathematics. 10(8), 1–15. DOI: https://doi.org/10.3390/math10081206
[92] Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. Journal of mathematical psychology. 15(3), 234–281. DOI: https://doi.org/10.1016/0022-2496(77)90033-5
[93] Suh, Y., Park, Y., Kang, D., 2019. Evaluating mobile services using integrated weighting approach and fuzzy VIKOR. PLoS One. 14(6), 1–28. DOI: https://doi.org/10.1371/journal.pone.0217786
[94] Topno, A.R., Job, M., Rusia, D.K., et al., 2022. Prioritization and identification of vulnerable sub-watersheds using morphometric analysis and an integrated AHP-VIKOR method. Water Supply. 22(11), 8050–8064. DOI: https://doi.org/10.2166/ws.2022.303
[95] Ren, J., Manzardo, A., Mazzi, A., et al., 2015. Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. International Journal of Life Cycle Assessment. 20(6), 842–853. DOI: https://doi.org/10.1007/s11367-015-0877-8
[96] Saaty, R.W., 1987. The analytic hierarchy process-what it is and how it is used. Mathematical Modelling. 9(3–5), 161–176. DOI: https://doi.org/10.1016/0270-0255(87)90473-8
[97] Saaty, T.L., Vargas, L.G., 1987. Stimulus-response with reciprocal kernels: The rise and fall of sensation. Journal of Mathematical Psychology. 31(1), 83–92. DOI: https://doi.org/10.1016/0022-2496(87)90037-X
[98] Saaty, T.L., 1990. How to make a decision: The analytic hierarchy process. European Journal of Operational Research. 48(1), 9–26. DOI: https://doi.org/10.1016/0377-2217(90)90057-I
[99] Ratnam, K.N., Srivastava, Y.K., Venkateswara Rao, V., et al., 2005. Check dam positioning by prioritization micro-watersheds using SYI model and morphometric analysis—remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing. 33(1), 25–38. DOI: https://doi.org/10.1007/BF02989988
[100] Krisper, M., 2021. Problems with Risk Matrices Using Ordinal Scales. Available from: http://arxiv.org/abs/2103.05440
[101] Metcalf, J., Peterson, L., Carrasquillo, R., et al., 2012. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development. In Proceedings of the 42nd International Conference on Environmental Systems; San Diego, CA, USA; 15–19 July 2012. p. 3444.
[102] Nitheshnirmal, S., Bhardwaj, A., Dineshkumar, C., et al., 2019. Prioritization of erosion prone micro-watersheds using morphometric analysis coupled with multi-criteria decision making. Proceedings. 24(1), 11. DOI: https://doi.org/10.3390/iecg2019-06207
[103] Gumma, M.K., Birhanu, B.Z., Mohammed, I.A., et al., 2016. Prioritization of watersheds across mali using remote sensing data and GIS techniques for agricultural development planning. Water (Switzerland). 8(6), 1–17. DOI: https://doi.org/10.3390/W8060260
[104] Dofee, A.A., Chand, P., Kumar, R., 2024. Prioritization of soil erosion-prone sub-watersheds using geomorphometric and statistical-based weighted sum priority approach in the middle Omo-Gibe River basin, Southern Ethiopia. International Journal of Digital Earth. 17(1), 1–32. DOI: https://doi.org/10.1080/17538947.2024.2350198
[105] Makhdumi, W., Dwarakish, G.S., 2019. Prioritisation of watersheds using TOPSIS and VIKOR method. In Proceedings of the SPIE 11174, Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019); Paphos, Cyprus; 27 June 2019. p. 6. DOI: https://doi.org/10.1117/12.2532024
[106] Nasir, M.J., Ahmad, W., Jun, C., et al., 2023. Soil erosion susceptibility assessment of Swat River sub-watersheds using the morphometry-based compound factor approach and GIS. Environmental Earth Sciences. 82(12), 1–28. DOI: https://doi.org/10.1007/s12665-023-10982-4
[107] Gela, A.G., Mengistu, D.A., Maru, S., et al., 2020. Watershed Prioritization Using Morphometric Analysis & RUSLE Model for Soil Conservation Planning, in Gilgel Abay Watershed, Ethiopia, 15 December 2020, PREPRINT (Version 1) available at Research Square. DOI: https://doi.org/10.21203/rs.3.rs-126047/v1
[108] Biswas, S.S., 2016. Analysis of GIS based morphometric parameters and hydrological changes in Parbati River basin, Himachal Pradesh, India. Journal of Geography & Natural Disasters. 6(2), 1–8. DOI: https://doi.org/10.4172/2167-0587.1000175
[109] Sethupathi, A.S., Lakshmi, N., Vasanthamohan, V., et al., 2011. Prioritization of mini watersheds based on morphometric analysis using remote sensing and GIS in a drought prone Bargur Mathur sub watersheds, Ponnaiyar River basin, India. International Journal of Geomatics and Geosciences. 2(2), 403–414.
[110] Singh, A.P., Arya, A.K., Sen Singh, D., 2020. Morphometric analysis of Ghaghara River basin, India, using SRTM data and GIS,” Journal of the Geological Society of India. 95(2), 169–178. DOI: https://doi.org/10.1007/s12594-020-1406-3
[111] Hindersah, R., Handyman, Z., Indriani, F.N., et al., 2018. Azotobacter population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with Azotobacter. Journal of Degraded Andmining Landsmanagement. 5(53), 2502–2458. DOI: https://doi.org/10.15243/jdmlm
[112] Paghadal, A.M., Rank, H.D., Makavana, J.M., et al., 2019. Quantitative analysis of geomorphometric parameters of Ozat River basin using remote sensing and GIS. International Journal of Current Microbiology and Applied Sciences. 8(09), 213–233. DOI: https://doi.org/10.20546/ijcmas.2019.809.027
[113] Langbein, W.B., 1947. Topographic characteristics of drainage basins. No. 968-C, USGPO. Available from: http://pubs.usgs.gov/wsp/0968c/report.pdf (cited 12 February 2022).
[114] Sukristiyanti, S., Maria, R., Lestiana, H., 2018. Watershed-based morphometric analysis: A review. IOP Conference Series: Earth and Environmental Science. 118(1), 1–6. DOI: https://doi.org/10.1088/1755-1315/118/1/012028.
[115] Rai, P.K., Chandel, R.S., Mishra, V.N., et al., 2018. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Applied Water Science. 8(1), 1–16. DOI: https://doi.org/10.1007/s13201-018-0660-7
[116] Sakthivel, R., Jawahar Raj, N., Sivasankar, V., et al., 2019. Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India. Applied Water Science. 9(1), 1–18. DOI: https://doi.org/10.1007/s13201-019-0899-7
[117] Umrikar, B.N., 2017. Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India. Applied Water Science. 7(5), 2231–2243. DOI: https://doi.org/10.1007/s13201-016-0390-7
[118] Patel, D.P., Gajjar, C.A., Srivastava, P.K., 2013. Prioritization of Malesari mini-watersheds through morphometric analysis: A remote sensing and GIS perspective. Environmental Earth Sciences. 69(8), 2643–2656. DOI: https://doi.org/10.1007/s12665-012-2086-0
[119] Chopra, R., Dhiman, R.D., Sharma, P.K., 2005. Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing. 33(4), 531–539. DOI: https://doi.org/10.1007/BF02990738
[120] Nautiyal, M.D., 1994. Morphometric analysis of a drainage basin using aerial photographs: A case study of Khairkuli basin, district Dehradun, U.P. Journal of the Indian Society of Remote Sensing. 22(4), 251–261. DOI: https://doi.org/10.1007/BF03026526
[121] Ahmed, S.A., Chandrashekarappa, K.N., Raj, S.K., et al., 2010. Evaluation of morphometric parameters derived from ASTER and SRTM DEM—A study on Bandihole sub-watershed basin in Karnataka. Journal of the Indian Society of Remote Sensing. 38(2), 227–238. DOI: https://doi.org/10.1007/s12524-010-0029-3
[122] Vittala, S.S., Govindaiah, S., Gowda, H.H., 2004. Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district, South India using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing. 32(4), 351–361,
[123] Rai, P., Chaubey, P.K., Mohan, K., et al., 2017. Geoinformatics for assessing the inferences of quantitative drainage morphometry of the Narmada Basin in India. Applied Geomatics. 9(3), 167–189. DOI: https://doi.org/10.1007/s12518-017-0191-1
[124] Das, A.K., Mukherjee, S., 2005. Drainage morphometry using satellite data and GIS in Raigad district, Maharashtra. Journal of the Geological Society of India. 65(5), 577–586.
[125] Puno, G.R., Puno, R.C.C., 2019. Watershed conservation prioritization using geomorphometric and land use-land cover parameters. Global Journal of Environmental Science and Management. 5(3), 279–294. DOI: https://doi.org/10.22034/gjesm.2019.03.02
[126] Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., et al., 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology. 524, 733–752. DOI: https://doi.org/10.1016/j.jhydrol.2015.03.027
[127] Moriasi, D.N., Gitau, M.W., Pai, N., et al., 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE. 58(6), 1763–1785. DOI: https://doi.org/10.13031/trans.58.10715
[128] Liu, X., Li, H., Zhang, S., et al., 2019. Gully erosion control practices in Northeast China: A review. Sustainability. 11(18), 1–16. DOI: https://doi.org/10.3390/su11185065
[129] Welde, K., 2016. Identification and prioritization of subwatersheds for land and water management in Tekeze dam watershed, Northern Ethiopia. International Soil and Water Conservation Research. 4(1), 30–38. DOI: https://doi.org/10.1016/j.iswcr.2016.02.006
[130] Kefay, T., Abdisa, T., Tumsa, B.C., 2022. Prioritization of susceptible watershed to sediment yield and evaluation of Best Management Practice: A case study of Awata River, Southern Ethiopia. Applied and Environmental Soil Science. 2022(1), 1–16. DOI: https://doi.org/10.1155/2022/1460945
[131] Jothimani, M., Lawrence, F., Dawit, Z., 2020. Morphometric analysis and prioritization of sub-watersheds for soil erosion using Geomatics technologies in Megech River catchment, Lake Tana Basin, North Western Ethiopia. Ethiopian Journal of Science and Sustainable Development e-ISSN. 8(1), 52–64. DOI: https://doi.org/10.20372/ejssdastu:v8.i1.2021.225
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Endaweke Assegide, Tena Alamirew, Claire L. Walsh, Gete Zeleke
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.