Evaluation of Pesticide Effects on Honeybee Health and Colony Collapse: Findings from a Beekeeper Survey in the Beni Mellal-Khenifra Region, Morocco
DOI:
https://doi.org/10.30564/jees.v7i2.7645Abstract
Since it first appeared in 2022, the phenomenon referred to as Colony Collapse Disorder (CCD) has affected several regions of Morocco to varying degrees. In order to assess the possible impact of pesticides on the appearance of this syndrome, we conducted a study aimed at evaluating the impact of pesticide use on the emergence of this syndrome through a year-long survey involving 160 beekeepers in the Beni Mellal–Khenifra Region (BKR) who also experienced an unprecedented desertion of hives during the same period. The majority of surveyed beekeepers practice mixed (45%) or migratory beekeeping (42%) and provide supplementary feeding (83.75%) to support their bees. Nearly 37.5% of the hives are located near crops treated with pesticides, exposing the bees to these chemicals. The results showed that the majority of beekeepers reported a cessation of queen laying (74.38%), high mortality rates among worker bees (81.25%), drones (65.63%), and queens (61.88%). Abnormal behaviors such as immobility with trembling (42.50%), reduced flights (47.50%), and disoriented navigation (28.75%) were also observed. Correlation analyses indicate that proximity to treated crops significantly increases the risk of queen laying cessation (Odds Ratio 6.0) and a reduction in waggle dances (Odds Ratio 2.41). Extended foraging flights show a borderline statistical significance (Odds Ratio 2.33), suggesting a disruption of natural food sources. These results highlight the potential impact of pesticides on colony health and bee behavior, pointing out the need to adapt beekeeping practices and implement protective measures against pesticides.
Keywords:
Beekeeping; Honeybees; Colony Collapse Disorder; Pesticides; Beni Mellal-Khenifra; MoroccoReferences
[1] Nzula, M.C., 2018. Evaluation of apiculture in the context of food security and environmental management in Kathonzweni division, Makueni county, Kenya. Available from: https://ir-library.ku.ac.ke/server/api/core/bitstreams/86224b5d-9639-4037-b448-9e786237453e/content
[2] Ministère de l'Environnement, 2017. Etude nationale sur la biodiversité au Maroc. Projet GEF 6105/92.
[3] Moujanni, A., Essamadi, A.K., Terrab, A., 2017. Beekeeping in Morocco: focus on honey production. International Journal of Innovation and Applied Studies. 20(1), 52–78. Available from: https://hal.science/hal-01464924v1
[4] Département de l'Agriculture, Maroc, 2016. Contrats Programmes pour le développement des filières de production marocaine. Available from: https://www.agriculture.gov.ma/sites/default/files/contrats_programmes_vf.pdf
[5] Les Chiffres Clés de La Filière Apiculture—Fellah Trade, 2022. Available from: www.fellah-trade.com (In French)
[6] Apiculture: Un effondrement des colonies est constaté dans la plupart des régions. La vie eco, 2022. Available from: https://www.lavieeco.com/affaires/apiculture-un-effondrement-des-colonies-est-constate-dans-la-plupart-des-regions/ (In French)
[7] Johnson, R., 2011. Honey bee colony collapse disorder. DIANE Publishing: Darby, PA, USA.
[8] Vanengelsdorp, D., Traynor, K.S., Andree, M., et al., 2017. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. PLoS One. 12(7), e0179535. DOI: https://doi.org/10.1371/journal.pone.0179535
[9] Grillone, G., Laurino, D., Manino, A., et al., 2017. Toxicity of thiametoxam on invitro reared honey bee brood. Apidologie. 48, 635–643. Available from: https://hal.science/hal-02973432v1
[10] Frazier, M., Mullin, C., Frazier, J., et al., 2008. What have pesticides got to do with it?. American Bee Journal. 148(6), 521–524. Available from: https://www.researchgate.net/publication/242418397
[11] Farooqui, T., 2013. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochemistry International. 62(1), 122–136. DOI: https://doi.org/10.1016/j.neuint.2012.09.020
[12] CCD Steering Committee Working Group, 2007. Colony collapse disorder action plan. Available from: http://www.ars.usda.gov/is/br/ccd/ccd_actionplan.%20Pdf
[13] Pollinisateurs Au Maroc, les abeilles désertent le plus ancien rucher au monde. Liberation, 2022. Available from: https://www.liberation.fr/environnement/biodiversite/au-maroc-les-abeilles-desertent-le-plus-ancien-rucher-au-monde-20220404_SHC3LHW56BADDPTCFHAXVEDJ6U/ (In French)
[14] L'apiculture: Un secteur à fort potentiel dans la région Béni Mellal-Khénifra. La Vérité, 2021. Available from: https://www.laverite.ma/lapiculture-un-secteur-a-fort-potentiel-dans-la-region-beni-mellal-khenifra/#:~:text=B%C3%A9ni%20Mellal%2DKh%C3%A9nifra,L'apiculture%3A%20Un%20secteur%20%C3%A0%20fort%20potentiel%20dans,la%20r%C3%A9gion%20B%C3%A9ni%20Mellal%2DKh%C3%A9nifra&text=En%20raison%20de%20sa%20diversit%C3%A9,cette%20activit%C3%A9%20en%20pleine%20expansion (In French)
[15] HCP, 2017. Projections de la population des régions et des provinces 2014-2030. Available from: https://www.hcp.ma/region-drta/PROJECTIONS-DE-LA-POPULATION-DES-REGIONS-ET-DES-PROVINCES-2014-2030_a59.html (In French)
[16] Order, M., 2012. Reconnaissance de l'IGP « Miel d'Euphorbe Tadla-Azilal » et homologation du cahier des charges y afférent (NOMACERT sarl). Morr off Bull. 6074, 2542–2525. Available from: https://faolex.fao.org/docs/pdf/mor204633.pdf (In French)
[17] Blacquiere, T., Smagghe, G., Van Gestel, C.A., et al., 2012. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology. 21, 973–992. DOI: https://doi.org/10.1007/s10646-012-0863-x
[18] Van der Sluijs, J.P., Simon-Delso, N., Goulson, D., et al., 2013. Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability. 5(3–4), 293–305. DOI: https://doi.org/10.1016/j.cosust.2013.05.007
[19] European Academies' Science Advisory Council (EASAC), 2015. Ecosystem services, agriculture and neonicotinoids. Available from: https://easac.eu/fileadmin/PDF_s/reports_statements/Easac_15_ES_web_complete.pdf
[20] Siviter H., Koricheva J., Brown M.J., et al., 2018. Quantifying the impact of pesticides on learning and memory in bees. Journal of Applied Ecology. 55(6), 2812–2821. DOI: https://doi.org/10.1111/1365-2664.13193
[21] Palmer, M.J., Moffat, C., Saranzewa, N., et al., 2013. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature Communications. 4(1), 1–8. DOI: https://doi.org/10.1038/ncomms2648
[22] Diao, Q., Li B., Zhao H., et al., 2018. Enhancement of chronic bee paralysis virus levels in honeybees acute exposed to imidacloprid: A Chinese case study. Science of the Total Environment. 630, 87–494. DOI: https://doi.org/10.1016/j.scitotenv.2018.02.258
[23] Dai, P., Jack C.J., Mortensen A.N., et al., 2019. Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to Apis mellifera L. larvae reared in vitro. Pest Management Science. 75(1), 29–36. DOI: https://doi.org/10.1002/ps.5124
[24] Gupta, D., Chauhan, H., Gupta, S., et al., 2019. Effect of colony collapse disorder on honeybees. Journal of Computational and Theoretical Nanoscience. 16(10), 4149–4152. DOI: https://doi:10.1166/jctn.2019.8494
[25] Magal, P., Webb, G.F., Wu, Y., 2019. An environmental model of honey bee colony collapse due to pesticide contamination. Bulletin of Mathematical Biology. 81, 4908–4931. DOI: https://doi.org/10.1007/s11538-019-00662-5
[26] Buchori, D., Rizali, A., Priawandiputra, W., et al., 2022. Beekeeping and managed bee diversity in Indonesia: Perspective and preference of beekeepers. Diversity. 14(1), 52. DOI: https://doi.org/10.3390/d14010052
[27] Yordanova, M., Evison, S.E., Gill, R.J., et al., 2022. The threat of pesticide and disease co-exposure to managed and wild bee larvae. International Journal for Parasitology: Parasites and Wildlife. 17, 319. DOI: https://doi.org/10.1016/j.ijppaw.2022.03.001
[28] Wu-Smart, J., Spivak, M., 2016. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Scientific Reports. 6(1), 1–11. Available from: https://www.researchgate.net/publication/307086827
[29] Camazine, S., Cakmak, I., Cramp, K., et al., 1998. How healthy are commercially-produced US honey bee queens?. The American Bee Journal. 138, 677–680. Available from: https://www.researchgate.net/publication/282053963
[30] Alaux, C., Folschweiller, M., McDonnell, C., et al., 2011. Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). Journal of Invertebrate Pathology. 106(3), 380–385. DOI: https://doi.org/10.1016/j.jip.2010.12.005
[31] Gauthier, L., Ravallec, M., Tournaire, M., et al., 2011. Viruses associated with ovarian degeneration in Apis mellifera L. queens. PLOS ONE. 6(1), e16217. DOI: https://doi.org/10.1371/journal.pone.0016217
[32] Collins, A.M., Pettis, J.S., 2013. Correlation of queen size and spermathecal contents and effects of miticide exposure during development. Apidologie. 44, 351–356. DOI: https://hal.science/hal-01201304v1
[33] Sandrock, C., Tanadini, L.G., Pettis, J.S., et al., 2014. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agricultural and Forest Entomology. 16(2), 119–128. DOI: https://doi.org/10.1111/afe.12041
[34] Williams, G.R., Troxler, A., Retschnig, G., et al., 2015. Neonicotinoid pesticides severely affect honey bee queens. Science Reports. 5, 146211. DOI: https://doi:10.1038/srep14621
[35] Chaimanee, V., Evans, J.D., Chen, Y., et al., 2016. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology. 89, 1–8. DOI: https://doi.org/10.1016/j.jinsphys.2016.03.004
[36] Dussaubat, C., Maisonnasse, A., Crauser, D., et al., 2016. Combined neonicotinoid pesticide and parasite stress alter honeybee queens' physiology and survival. Scientific Reports. 6(1), 1–7. DOI: https://doi.org/10.1038/srep31430
[37] Rhodes, J., Somerville, D., 2003. Introduction and early performance of queen bees: Some factors affecting success: A report for the rural industries research and development corporation. RIRDC Publication No 03/049.
[38] Kairo, G., Provost, B., Tchamitchian, S., et al., 2016. Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific Reports. 6(1), 1–12. DOI: https://doi.org/10.1038/serp31904
[39] Grassl, J., Holt, S., Cremen, N., et al., 2018. Synergistic effects of pathogen and pesticide exposure on honey bee (Apismellifera) survival and immunity. Journal of Invertebrate Pathology. 159, 78–86. DOI: https://doi.org/10.1016/j.jip.2018.10.005
[40] Straub, L., Villamar‐Bouza, L., Bruckner, S., et al., 2021. Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. Journal of Applied Ecology. 58(11), 2515–2528. DOI: https://doi.org/10.1111/1365-2664.14000
[41] Strobl, V., Albrecht, M., Villamar-Bouza, L., et al., 2021. The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta. Environmental Pollution. 284, 117106. DOI: https://doi.org/10.1016/j.envpol.2021.117106
[42] Wu, J.Y., Anelli, C.M., Sheppard, W.S., 2011. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PlOS ONE, 6(2), e14720. DOI: https://doi.org/10.1371/journal.pone.0014720
[43] Sandrock, C., Tanadini, M., Tanadini, L.G., et al., 2014. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLOS ONE. 9(8), e103592. DOI: https://doi.org/10.3389/finsc.2022.821145
[44] Seitz, N., Traynor, K.S., Steinhauer, N., et al., 2015. A national survey of managed honey bee 2014–2015 annual colony losses in the USA. Journal of Apicultural Research. 54(4), 292–304. DOI: https://doi.org/10.1080/00218839.2016.1153294
[45] Fischer, J., Müller, T., Spatz, A.K., et al., 2014. Neonicotinoids interfere with specific components of navigation in honeybees. PloS ONE. 9(3), e91364. DOI: https://doi.org/10.1371/journal.pone.009136
[46] Han, P., Niu, C.Y., Lei, C.L., et al., 2010. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology. 19, 1612–1619. DOI: https://doi.org/10.1007/s10646-010-0546-4
[47] Eiri, D.M., Nieh, J.C., 2012. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. Journal of Experimental Biology. 215(12), 2022–2029. DOI: https://doi.org/10.1242/jeb.068718
[48] Alaux, C., Ducloz, F., Crauser, D., et al., 2010. Diet effects on honeybee immunocompetence. Biology Letters. 6(4), 562–565. DOI: https://doi.org/10.1098/rsbl.2009.0986
[49] Chiron, J., Hattenberger, A.M., 2008. Mortalités, effondrements et affaiblissements des colonies d'abeilles. Entomology Papers from Other Sources. 3. Available from: https://digitalcommons.unl.edu/entomologyother (in French)
[50] Tsvetkov, N., Samson-Robert, O., Sood, K., et al., 2017. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science. 356(6345), 1395–1397. DOI: https://doi.org/10.1126/science.aam7470
[51] Gill, R.J., Ramos-Rodriguez, O., Raine, N.E., 2012. Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature. 491(7422), 105–108. DOI: https://doi.org/10.1038/nature11585
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Amina Brhich, Tarik Hachimi, Hicham Chatoui, Malika Ait Sidi Brahim, Rachid Hnini, Redouane Chatoui, Hasna Merzouki, Mohamed Merzouki
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.