Copula Method and Neural Networks for X-Band Polarimetric Radar Rainfall Retrieval in West Africa

Authors

  • Sahouarizié Adama Ouattara

    Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire, Université Félix Houphouët-Boigny,22 BP 582 Abidjan 22, Abidjan, Côte d’Ivoire

  • Eric-Pascal Zahiri

    Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire, Université Félix Houphouët-Boigny,22 BP 582 Abidjan 22, Abidjan, Côte d’Ivoire

  • Kadjo Augustin Koffi

    Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire, Université Félix Houphouët-Boigny,22 BP 582 Abidjan 22, Abidjan, Côte d’Ivoire

  • Modeste Kacou

    Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire, Université Félix Houphouët-Boigny,22 BP 582 Abidjan 22, Abidjan, Côte d’Ivoire

  • Abé Delfin Ochou

    Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire, Université Félix Houphouët-Boigny,22 BP 582 Abidjan 22, Abidjan, Côte d’Ivoire

DOI:

https://doi.org/10.30564/jees.v7i4.7734
Received: 11 November 2024 | Revised: 2 December 2024 | Accepted: 14 January 2025 | Published Online: 19 March 2025

Abstract

In the context of climate change, countries in West Africa are faced with recurrent flooding with catastrophic consequences, that makes it imperative to have access to rainfall information on fine spatial and temporal scales for better monitoring and prediction of these phenomena, as could be provided by weather radars. Based on an extensive archive of data from the X-band polarimetric radar and rain gauges observations gathered during the intensive AMMA campaigns in 2006–2007 and the Megha-Tropiques satellite measurement validation programme in 2010 in West Africa, we (i) simulated jointly realistic data for polarimetric radar variables and rain intensity using copula, and (ii) assessed rain rate estimation methods based on neural network (NN) inversion techniques and non-linearly calibrated parametric algorithms. The assessment of rainfall rate retrieval by these estimators is carried out using the part of the observations database not employed for calibration steps. The multiparametric algorithms R(ZH,KDP) and R(ZDR,KDP) perform better than R(ZH,ZDR) and R(ZH,ZDR,KDP), especially since they are calibrated using copulas with upper tail dependencies, with KGE ranging in 0.68-0.75 and 0.79-0.82, respectively versus ranges of 0.40-0.64 and 0.20–0.51, for the two latter estimators. The neural network-based estimators RNN(ZDR,KDP) and RNN(ZH,KDP), show KGE score characteristics comparable to those obtained from the best parametric relations, specifically optimized for the synthetic copula-based dataset. However, the neural network-based estimators were shown to be more robust when applied to a specific rainfall event. More specifically, neural network-based estimators trained on synthetic data are sensitive to the copulas' ability to capture the dependence between the variables of interest over the entire distribution of joint values. This leads to a near-cancellation of sensitivity to variability in the raindrop size distribution, as shown the coefficients of correlation near 1, especially for RNN(ZDR,KDP), and for less extent RNN(ZH,KDP).

Keywords:

Quantitative Precipitation Estimation; Copulas; Polarimetric Radar Data; Multiparametric Algorithms; Artificial Neural Network; Non-Linear Fitting

References

[1] Attoumane, A., Dos Santos, S., Kacou, M., et al., 2022. Individual perceptions on rainfall variations versus precipitation trends from satellite data: An interdisciplinary approach in two socio-economically and topographically contrasted districts in Abidjan, Côte d'Ivoire. International Journal of Disaster Risk Reduction. 81, 103285. DOI: https://doi.org/10.1016/j.ijdrr.2022.103285

[2] Zahiri, E.-P., Bamba, I., Famien, A.M., et al., 2016. Mesoscale extreme rainfall events in West Africa: The cases of Niamey (Niger) and the Upper Ouémé Valley (Benin). Weather and Climate Extremes. 13, 15–34. DOI:https://doi.org/10.1016/j.wace.2016.05.001

[3] Gosset, M., Dibi-Anoh, P.A., Schumann, G., et al., 2023. Hydrometeorological Extreme Events in Africa: The Role of Satellite Observations for Monitoring Pluvial and Fluvial Flood Risk. Surveys in Geophysics. 44, 197–223. DOI: https://doi.org/10.1007/s10712-022-09749-6

[4] Gou, Y., Ma, Y., Chen, H., et al., 2018. Utilization of a C-band Polarimetric Radar for Severe Rainfall Event Analysis in Complex Terrain over Eastern China. Remote Sensing. 11, 22. DOI: https://doi.org/10.3390/rs11010022

[5] Xia, Q., Zhang, W., Chen, H., et al., 2020. Quantification of Precipitation Using Polarimetric Radar Measurements during Several Typhoon Events in Southern China. Remote Sensing. 12, 2058. DOI: https://doi.org/10.3390/rs12122058

[6] Gosset, M., Zahiri, E., Moumouni, S., 2010. Rain drop size distribution variability and impact on X‐band polarimetric radar retrieval: Results from the AMMA campaign in Benin. Quarterly Journal of the Royal Meteorological Society. 136, 243–256. DOI: https://doi.org/10.1002/qj.556

[7] Koffi, A.K., Gosset, M., Zahiri, E.-P., et al., 2014. Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa. Atmospheric Research. 143, 438–461. DOI: https://doi.org/10.1016/j.atmosres.2014.03.009

[8] Alcoba, M., Gosset, M., Kacou, M., et al., 2016. Characterization of Hydrometeors in Sahelian Convective Systems with an X-Band Radar and Comparison with In Situ Measurements. Part II: A Simple Brightband Method to Infer the Density of Icy Hydrometeors. Journal of Applied Meteorology and Climatology. 55, 251–263. DOI: https://doi.org/10.1175/JAMC-D-15-0014.1

[9] Cazenave, F., Gosset, M., Kacou, M., et al., 2016. Characterization of Hydrometeors in Sahelian Convective Systems with an X-Band Radar and Comparison with In Situ Measurements. Part I: Sensitivity of Polarimetric Radar Particle Identification Retrieval and Case Study Evaluation. Journal of Applied Meteorology and Climatology. 55, 231–249. DOI: https://doi.org/10.1175/JAMC-D-15-0014.1

[10] Bringi, V.N., Keenan, T.D., Chandrasekar, V., 2001. Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: a self-consistent method with constraints. IEEE Transactions on Geoscience and Remote Sensing. 39, 1906–1915. DOI: https://doi.org/10.1109/36.951081

[11] Park, S.-G., Bringi, V.N., Chandrasekar, V., et al., 2005. Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part I: Theoretical and Empirical Basis. Journal of Atmospheric and Oceanic Technology. 22, 1621–1632. DOI: https://doi.org/10.1175/JTECH1803.1

[12] Testud, J., Le Bouar, E., Obligis, E., et al., 2000. The Rain Profiling Algorithm Applied to Polarimetric Weather Radar. Journal of Atmospheric and Oceanic Technology. 17, 332–356. DOI: https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2

[13] Anagnostou, E.N., Grecu, M., Anagnostou, M.N., 2006. X-band Polarimetric Radar Rainfall Measurements in Keys Area Microphysics Project. Journal of the Atmospheric Sciences. 63, 187–203. DOI: https://doi.org/10.1175/JAS3592.1

[14] Carey, L.D., Rutledge, S.A., Ahijevych, D.A., et al., 2000. Correcting Propagation Effects in C-Band Polarimetric Radar Observations of Tropical Convection Using Differential Propagation Phase. Journal of Applied Meteorology and Climatology. 39, 1405–1433. DOI: https://doi.org/10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2

[15] Matrosov, S.Y., Clark, K.A., Martner, B.E., et al., 2002. X-Band Polarimetric Radar Measurements of Rainfall. Journal of Applied Meteorology and Climatology. 41, 941–952. DOI: https://doi.org/10.1175/1520-0450(2002)041<0941:XBPRMO>2.0.CO;2

[16] Zahiri, E.-P., Gosset, M., Lafore, J.-P., et al., 2008. Use of a Radar Simulator on the Output Fields from a Numerical Mesoscale Model to Analyze X-Band Rain Estimators. Journal of Atmospheric and Oceanic Technology. 25, 341–367. DOI: https://doi.org/10.1175/2007JTECHA933.1

[17] Zahiri, E.-P., Kacou, M., Gosset, M., et al., 2022. Modeling the Interdependence Structure between Rain and Radar Variables Using Copulas: Applications to Heavy Rainfall Estimation by Weather Radar. Atmosphere. 13, 1298. DOI: DOI: https://doi.org/10.3390/atmos13081298

[18] Ryzhkov, A.V., Giangrande, S.E., Schuur, T.J., 2005. Rainfall Estimation with a Polarimetric Prototype of WSR-88D. Journal of Applied Meteorology and Climatology. 44, 502–515. DOI: https://doi.org/10.1175/JAM2213.1

[19] Bringi, V.N., Rico-Ramirez, M.A., Thurai, M., 2011. Rainfall Estimation with an Operational Polarimetric C-Band Radar in the United Kingdom: Comparison with a Gauge Network and Error Analysis. Journal of Hydrometeorology. 12, 935–954. DOI: https://doi.org/10.1175/JHM-D-10-05013.1

[20] Zhang, Y., Liu, L., Bi, S., et al., 2019. Analysis of Dual-Polarimetric Radar Variables and Quantitative Precipitation Estimators for Landfall Typhoons and Squall Lines Based on Disdrometer Data in Southern China. Atmosphere. 10, 30. DOI: https://doi.org/10.3390/rs13040694

[21] Chen, H., Chandrasekar, V., Bechini, R., 2017. An Improved Dual-Polarization Radar Rainfall Algorithm (DROPS2.0): Application in NASA IFloodS Field Campaign. Journal of Hydrometeorology. 18, 917–937. DOI: https://doi.org/10.1175/JHM-D-16-0124.1

[22] Tokay, A., Kruger, A., Krajewski, W.F., 2001. Comparison of Drop Size Distribution Measurements by Impact and Optical Disdrometers. Journal of Applied Meteorology and Climatology. 40, 2083–2097. DOI: https://doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2

[23] Li, W., Chen, H., Han, L., et al., 2024. StarNet: A Deep Learning Model for Enhancing Polarimetric Radar Quantitative Precipitation Estimation. IEEE Transactions on Geoscience and Remote Sensing. 62, 1–13. DOI: https://doi.org/10.1109/TGRS.2024.3426532

[24] Zou, H., Wu, S., Tian, M., 2023. Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data. Advances in Atmospheric Sciences. 40, 1043–1057. DOI: https://doi.org/10.1007/s00376-022-2127-x

[25] Zhang, Y., Bi, S., Liu, L., et al., 2021. Deep Learning for Polarimetric Radar Quantitative Precipitation Estimation during Landfalling Typhoons in South China. Remote Sensing. 13, 3157. DOI: https://doi.org/10.3390/rs13163157

[26] Zhang, Y., Chen, S., Tian, W., et al., 2021. Offline Single-Polarization Radar Quantitative Precipitation Estimation Based on a Spatiotemporal Deep Fusion Model. Advances in Meteorology. 2021, 1–15. DOI: https://doi.org/10.1155/2021/9659167

[27] Chen, H., Chandrasekar, V., Tan, H., et al., 2019. Rainfall Estimation From Ground Radar and TRMM Precipitation Radar Using Hybrid Deep Neural Networks. Geophysical Research Letters. 46, 10669–10678. DOI: https://doi.org/10.1029/2019GL084771

[28] Pan, X., Lu, Y., Zhao, K., et al., 2021. Improving Nowcasting of Convective Development by Incorporating Polarimetric Radar Variables Into a Deep‐Learning Model. Geophysical Research Letters. 48, e2021GL095302. https://doi.org/10.1029/2021GL095302

[29] Huangfu, J., Hu, Z., Zheng, J., et al., 2024. Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning. Advances in Atmospheric Sciences. 41, 1147–1160. DOI: https://doi.org/10.1007/s00376-023-3039-0

[30] Vulpiani, G., Marzano, F.S., Chandrasekar, V., et al., 2006. Polarimetric Weather Radar Retrieval of Raindrop Size Distribution by Means of a Regularized Artificial Neural Network. IEEE Transactions on Geoscience and Remote Sensing. 44, 3262–3275. DOI: https://doi.org/10.1109/TGRS.2006.878438

[31] Mishchenko, M.I., Travis, L.D., 1998. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. Journal of Quantitative Spectroscopy and Radiative Transfer. 60, 309–324. DOI: https://doi.org/10.1016/S0022-4073(98)00008-9

[32] Vulpiani, G., Giangrande, S., Marzano, F.S., 2009. Rainfall Estimation from Polarimetric S-Band Radar Measurements: Validation of a Neural Network Approach. Journal of Applied Meteorology and Climatology. 48, 2022–2036. DOI: https://doi.org/10.1175/2009JAMC2172.1

[33] Li, W., Chen, H., Han, L., 2024. Improving Explainability of Deep Learning for Polarimetric Radar Rainfall Estimation. Geophysical Research Letters. 51, e2023GL107898. DOI: https://doi.org/10.1029/2023GL107898

[34] Favre, A., El Adlouni, S., Perreault, L., et al., 2004. Multivariate hydrological frequency analysis using copulas. Water Resources Research. 40, 2003WR002456. DOI: https://doi.org/10.1029/2003WR002456

[35] Salvadori, G., Durante, F., De Michele, C., et al., 2016. A multivariate copula‐based framework for dealing with hazard scenarios and failure probabilities. Water Resources Research. 52, 3701–3721. DOI: https://doi.org/10.1002/2015WR017225

[36] Salvadori, G., De Michele, C., 2010. Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resources Research. 46, 2009WR009040. DOI: https://doi.org/10.1029/2009WR009040

[37] Van De Vyver, H., 2018. A multiscaling‐based intensity–duration–frequency model for extreme precipitation. Hydrological Processes. 32, 1635–1647. DOI: https://doi.org/10.1002/hyp.11516

[38] Moghisi, S.S., Yazdi, J., Salehi Neyshabouri, S.A.A., 2024. Multivariate Analysis of Rainfall Spatial Distribution and Its Effect on Stormwater Magnitudes. Journal of Hydrologic Engineering. 29, 05024002. DOI: https://doi.org/10.1061/JHYEFF.HEENG-5941

[39] Buliah, N.A., Yie, W.L.S., 2020. Modelling of extreme rainfall using copula. AIP Conference Proceedings. 2266, 090007. DOI: https://doi.org/10.1063/5.0018617

[40] Chen, H., Xu, Z., Chen, J., et al., 2023. Joint Risk Analysis of Extreme Rainfall and High Tide Level Based on Extreme Value Theory in Coastal Area. International Journal of Environmental Research and Public Health (IJERPH). 20, 3605. DOI: https://doi.org/10.3390/ijerph20043605

[41] Zhang, L., Singh, V.P., 2007. Gumbel–Hougaard Copula for Trivariate Rainfall Frequency Analysis. Journal of Hydrologic Engineering. 12, 409–419. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(409)

[42] Zhang, L., Singh, V.P., 2007. Trivariate Flood Frequency Analysis Using the Gumbel–Hougaard Copula. Journal of Hydrologic Engineering. 12, 431–439. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(431)

[43] De Luca, G., Rivieccio, G., 2023. Modeling and Simulating Rainfall and Temperature Using Rotated Bivariate Copulas. Hydrology. 10, 236. DOI: https://doi.org/10.3390/hydrology10120236

[44] Atiah, W.A., Amekudzi, L.K., Danuor, S.K., 2023. Mesoscale convective systems and contributions to flood cases in Southern West Africa (SWA): A systematic review. Weather and Climate Extremes. 39(2011), 100551. DOI: https://doi.org/10.1016/j.wace.2023.100551

[45] Smyth, T.J., Illingworth, A.J., 1998. Correction for attenuation of radar reflectivity using polarization data. Quarterly Journal of the Royal Meteorological Society. 124, 2393–2415. DOI: https://doi.org/10.1002/qj.49712455111

[46] Zhang, G., Vivekanandan, J., Brandes, E., 2001. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing. 39, 830–841. DOI: https://doi.org/10.1109/36.917906

[47] Russell, B., Williams, E.R., Gosset, M., et al., 2010. Radar/rain‐gauge comparisons on squall lines in Niamey, Niger for the AMMA. Quarterly Journal of the Royal Meteorological Society. 136, 289–303. DOI: https://doi.org/10.1002/qj.548

[48] Nelsen, R.B., 2006. An Introduction to Copulas, 2nd ed. Springer: New York, NY, USA.

[49] Schweizer, B., Sklar, A., 2011. Probabilistic Metric Spaces. Dover Publications: Newburyport, MA, USA.

[50] Kimaldorf, G., Sampson, A., 1975. One-parameter families of bivariate distributions with fixed marginals. Communications in Statistics. 4, 293–301. DOI: https://doi.org/10.1080/03610927508827247

[51] Deheuvels, P., 1979. La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance. Bulletins de l'Académie Royale de Belgique. 65, 274–292. Available from: https://www.persee.fr/doc/barb_0001-4141_1979_num_65_1_58521

[52] Genest, C., Mackay, J., 1986. The Joy of Copulas: Bivariate Distributions with Uniform Marginals. The American Statistician. 40, 280–283. DOI: https://doi.org/10.1080/00031305.1986.10475414

[53] Poulin, A., Huard, D., Favre, A.-C., et al., 2007. Importance of Tail Dependence in Bivariate Frequency Analysis. Journal of Hydrologic Engineering. 12, 394–403. DOI: https://doi.org/10.1061/ASCE1084-0699200712:4394

[54] Frees, E.W., Valdez, E.A., 1998. Understanding Relationships Using Copulas. North American Actuarial Journal. 2, 1–25. DOI: https://doi.org10.1080/10920277.1998.10595667

[55] Marshall, A.W., Olkin, I., 1988. Families of Multivariate Distributions. Journal of the American Statistical Association. 83, 834–841. DOI: https://doi.org/10.1080/01621459.1988.10478671

[56] Matrosov, S.Y., Kingsmill, D.E., Martner, B.E., et al., 2005. The Utility of X-Band Polarimetric Radar for Quantitative Estimates of Rainfall Parameters. Journal of Hydrometeorology. 6, 248–262. DOI: https://doi.org/10.1175/JHM424.1

[57] Gorgucci, E., Scarchilli, G., Chandrasekar, V., er al., 2001. Rainfall Estimation from Polarimetric Radar Measurements: Composite Algorithms Immune to Variability in Raindrop Shape–Size Relation. Journal of Atmospheric and Oceanic Technology. 18, 1773–1786. DOI: https://doi.org/10.1175/1520-0426(2001)018<1773:REFPRM>2.0.CO;2

[58] Maki, M., Park, S.-G., Bringi, V.N., 2005. Effect of Natural Variations in Rain Drop Size Distributions on Rain Rate Estimators of 3 cm Wavelength Polarimetric Radar. Journal of the Meteorological Society of Japan Series II. 83, 871–893. DOI: https://doi.org/10.2151/jmsj.83.871

[59] Coleman, T.F., Li, Y., 1996. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization. 6, 418–445. DOI: https://doi.org/10.1137/0806023

[60] Coleman, T.F., Li, Y., 1994. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Mathematical Programming. 67, 189–224. DOI: https://doi.org/10.1007/BF01582221

[61] Gupta, H.V., Kling, H., Yilmaz, K.K., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology. 377, 80–91. DOI: https://doi.org/10.1016/j.jhydrol.2009.08.003

[62] Moumouni, S., Gosset, M., Houngninou, E., 2008. Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers. Geophysical Research Letters. 35, 2008GL035755. DOI: https://doi.org/10.1029/2008GL035755

[63] Ryzhkov, A., Zhang, P., Bukovčić, P., et al., 2022. Polarimetric Radar Quantitative Precipitation Estimation. Remote Sensing. 14, 1695. DOI: https://doi.org/10.3390/rs14071695

[64] Giangrande, S.E., Ryzhkov, A.V., 2008. Estimation of Rainfall Based on the Results of Polarimetric Echo Classification. Journal of Applied Meteorology and Climatology. 47, 2445–2462. DOI: https://doi.org/10.1175/2008JAMC1753.1

[65] Matrosov, S.Y., 2010. Evaluating Polarimetric X-Band Radar Rainfall Estimators during HMT. Journal of Atmospheric and Oceanic Technology. 27, 122–134. DOI: https://doi.org/10.1175/2009JTECHA1318.1

[66] Genest, C., Favre, A.-C., 2007. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering. 12, 347–368. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)

Downloads

How to Cite

Ouattara, S. A., Eric-Pascal Zahiri, Kadjo Augustin Koffi, Modeste Kacou, & Abé Delfin Ochou. (2025). Copula Method and Neural Networks for X-Band Polarimetric Radar Rainfall Retrieval in West Africa. Journal of Environmental & Earth Sciences, 7(4), 27–54. https://doi.org/10.30564/jees.v7i4.7734