Higher Methane Emission Rates in the Vegetative Rice Growing Stages in the Lower Mekong Delta, Vietnam

Authors

  • Bui Thi Ngoc Oanh

    1. Department of Oceanology, Meteorology and Hydrology, University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; 2. Vietnam National University-Ho Chi Minh, Ho Chi Minh City 700000, Vietnam

  • Vo Huynh Huong

    1. Department of Oceanology, Meteorology and Hydrology, University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; 2. Vietnam National University-Ho Chi Minh, Ho Chi Minh City 700000, Vietnam

  • Elaine Alio

    Faculty of Agriculture and Forestry, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam

DOI:

https://doi.org/10.30564/jees.v7i5.8745
Received: 14 February 2025 | Revised: 3 March 2025 | Accepted: 7 March 2025 | Published Online: 6 May 2025

Abstract

The Mekong Delta in Vietnam is a region that produces rice and emits methane, a potent greenhouse gas. Vietnam’s rice exports, which rank among the top four globally, have a significant impact on the world’s food suppy. The Eddy Covariance system, positioned in the rice field, has been recording methane emission rates and bio-meteorological factors. This study presents the findings of three crop seasons (Summer-Autumn 2020 (S-A20), Winter-Spring 2021 (W-S21), and Spring-Summer 2021 (S-S21)) from the year 2020 to 2021. The highest CH4 emission value was observed in the S-S21 crop, reaching 4.14 µmol s1 m2. Elevated CH4 emission rates were predominantly recorded during the vegetative stage within first 21 days after planting, while lower CH4 emissions were observed during the reproductive and ripening stages. This pattern clearly indicates higher methane emissions at the vegetative stage of the growing rice, likely due to the abundance of organic matter in the rice fields. The average CH4 emission rate was 0.1 µmol m2 s1 . Notably,  high methane emissions were recorded when the soil surface temperature was below 33 °C. As a results, the S-S21 exhibits the highest methane emission rates compared to other seasons.

Keywords:

Rice Field Ecosystem; Methane Emission; Soil Surface Temperature; Eddy Covariance

References

[1] EPA, 2023. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. EPA 430-R-23-002, 12 February 2025. Available from: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021

[2] Dlugokencky, E.J., Masarie, K.A., Lang, P.M., et al., 1998. Continuing decline in the growth rate of the atmospheric methane burden. Nature. 393(6684), 447–450. DOI: https://doi.org/10.1038/30934

[3] Dlugokencky, E.J., Houweling, S., Bruhwiler, L., et al., 2003. Atmospheric methane levels off: Temporary pause or a new steady‐state?. Geophysical Research Letters. 30(19), ASC 5-1–ASC 5-4. DOI: https://doi.org/10.1029/2003gl018126

[4] Nisbet, E.G., Dlugokencky, E.J., Bousquet, P., 2014. Methane on the rise - again. Science. 343, 493–495. DOI: https://doi.org/10.1126/science.1247828

[5] Calvin, K., Dasgupta, D., Krinner, G., et al., 2023. AR6 Synthesis Report: Climate Change 2023. 13–19 March 2023. DOI: https://doi.org/10.59327/ipcc/ar6-9789291691647

[6] Whalen, S.C., 2005. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science. 22, 73–94. DOI: https://doi.org/10.1089/ees.2005.22.73

[7] Nazaries, L., Murrell, J.C., Millard, P., et al., 2013. Methane, microbes and models: Fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology. 15, 2395–2417. DOI: https://doi.org/10.1111/1462-2920.12149

[8] Karakurt, I., Aydin, G., Aydiner, K., 2012. Sources and mitigation of methane emissions by sectors: A critical review. Renewable Energy. 39, 40–48. DOI: https://doi.org/10.1016/j.renene.2011.09.006

[9] Turner, A.J., Frankenberg, C., Kort, E.A., 2019. Interpreting contemporary trends in atmospheric methane. Proceeding of National Academy of Sciences USA. 116, 2805–2813.

[10] Foley, J.A., Ramankutty, N., Brauman, K.A., et al., 2011. Solutions for a cultivated planet. Nature. 478(7369), 337–342. DOI: https://doi.org/10.1038/nature10452

[11] Montzka, S.A., Krol, M., Dlugokencky, E., et al., 2011. Small interannual variability of global atmospheric hydroxyl. Science. 331(6013), 67–69. DOI: https://doi.org/10.1126/science.1197640

[12] FAO, 2022. World Food and Agriculture – Statistical Yearbook 2022. FAO: Rome, Italy. pp. 1-365. DOI: https://doi.org/10.4060/cc2211en

[13] Kim C., Walitang, D., Sa, T., 2021. Methanogenesis and methane oxidation in paddy fields under organic fertilization. Korean Journal Environ Agriculture. 40(4), 295–312. DOI: https://doi.org/10.5338/KJEA.2021.40.4.34

[14] Tian, H.Q., Xu, X.F., Liu, M.L., et al., 2010. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: Application of a global biogeochemistry model. Biogeosciences. 7(9), 2673–2694.

[15] Dong, H.P., Nguyen, T.B., Le, H.A., 2023. Methane (CH4) emissions in rice production in Vietnam: current states and solutions. VNU Journal of Science. Earth and Environmental Studies. 39(1), 28–41. (in Vietnamese)

[16] Dong, X., Xu, W., Zhang, Y., et al., 2016. Effect of irrigation timing on root zone soil temperature. Root growth and grain yield and chemical composition in corn. Agronomy. 6, 34. DOI: https://doi.org/10.3390/agronomy6020034

[17] Yamane, I., Sato K., 1961. Effect of temperature on the formation of gases and ammonium nitrogen in the water-logged soils. Science Reports of the Research Institutes. Tohoku University. 12, 1–46.

[18] Tian, J., Chen, H., Wang, Y., et al., 2011. Methane production in relation with temperature, substrate and soil depth in Zoige wetlands on Tibetan Plateau. Acta Ecologica Sinica. 31(2), 121–125. DOI: https://doi.org/10.1016/j.chnaes.2011.01.002

[19] Muhammad, I., Lv, J.Z., Wang, J., et al., 2022. Regulation of soil microbial community structure and biomass to mitigate soil greenhouse gas emission. Frontiers in Microbiology. 13, 1–24. DOI: https://doi.org/10.3389/fmicb.2022.86886

[20] Khalil M.A.K., Shearer, M.J., Rasmussen, R.A., et al., 2008. Production, oxidation, and emissions of methane from rice fields in China. Journal of Geophysical Research: Biogeosciences. 113 (G3), G00A04 1-12. DOI: https://doi.org/10.1029/2007JG000461

[21] Senthilraja, K., Venkatesan, S., Nandhini, D.U., et al., 2023. Mitigating methane emission from the rice ecosystem through organic amendments. Agriculture. 13(5), 1037. DOI: https://doi.org/10.3390/agriculture13051037

[22] Tran, T., Nguyen, T.K.D., Le Xuan, T., et al., 2019. Climate Change Vulnerability Assessment Lang Sen Wetland Reserve. IUCN, Vietnam: pp. 1–49.

[23] Le, H.B., Nguyen, X.H., Nguyen, V.H.P., et al., 2023. Multiple factors contributing to deterioration of the Mekong Delta: A review. Wetlands. 43(7), 1-86. DOI: https://doi.org/10.1007/s13157-023-01740-0

[24] Tran, H.T., 2022. Hydrometeorological characteristics of Vietnam in 2022. Hanoi Youth Publishing: Hanoi, Vietnam. (in Vietnamese)

[25] Nguyen N.D., 2008. Rice plant textbook, National University – HCMC Publishing: 1-149 (in Vietnamese)

[26] Zhang, C., Li, G., Chen, T., et al., 2018. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice. 11(1), 1-12. DOI: https://doi.org/10.1186/s12284-018-0206-5

[27] Ren, H., Bao, J., Gao, Z., et al., 2023. How rice adapts to high temperatures. Frontiers in Plant Science. 14, 1-12. DOI: https://doi.org/10.3389/fpls.2023.1137923

[28] Cicerone, R.J., Shetter, J.D., Delwiche C.C., 1983. Seasonal variation of methane flux from a California rice paddy. Journal of Geophysical Research. 88, 11022–11024.

[29] Seiler, W., Holzapfel-Pschorn A., Conrad, R., et al., 1984. Methane emission from rice paddies. Journal of Atmospheric Chemistry. 1, 241–268.

[30] Holzapfel-Pschorn, A., Conrad, R., Seiler, W., 1986. Effects of vegetation on the emission of methane by submerged paddy soil. Plant and Soil. 92, 223–233.

[31] Chapman, A., Darby, S., Tompkins, E., et al., 2017. Sustainable rice cultivation in the deep flooded zones of the Vietnamese Mekong Delta. Ministry of Science and Technology Vietnam. 59(2), 34–38. DOI: https://doi.org/10.31276/vjste.59(2).34

[32] Kondolf G.M., Rubin Z.K., Minear J.T., 2014. Dams on the Mekong: Cumulative sediment starvation. Water Resources Research. 50(6), 5158–5169. DOI: https://doi.org/10.1002/2013WR014651

[33] Watanabe, A., Kimura, M., 1999. Influence of chemical properties of soils on methane emission from rice paddies. Communications in Soil Science and Plant Analysis. 30(17–18), 2449–2463. DOI: https://doi.org/10.1080/00103629909370386

[34] Inubushi, K., Saito, H., Arai, H., et al., 2017. Effect of oxidizing and reducing agents in soil on methane production in Southeast Asian paddies. Soil Science & Plant Nutrition. 64(1), 84–89. DOI: https://doi.org/10.1080/00380768.2017.1401907

[35] Soda, N., Gupta, B.K., Anwar, K., et al., 2018. Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Scientific Reports. 8(1), 4072. DOI: https://doi.org/10.1038/s41598-018-22131-0

[36] Oo, A.Z., Nguyen, L., Win, K.T., et al., 2013. Toposequential variation in methane emissions from double-cropping paddy rice in Northwest Vietnam. Geoderma. 209–210, 41–49. DOI: https://doi.org/10.1016/j.geoderma.2013.05.025

[37] Li, D., Liu, M., Cheng, Y., et al., 2011. Methane emissions from double-rice cropping system under conventional and no tillage in Southeast China. Soil and Tillage Research. 113, 77–81.

[38] Liu, S., Zhang, Y., Lin, F., et al., 2014. Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in southeast China. Plant and Soil. 374(1–2), 285–297. DOI: https://doi.org/10.1007/s11104-013-1878-7

[39] Oda, M., Chiem, N.H., 2018. Rice cultivation reduces methane emissions in high-emitting paddies. F1000Research. 7, 1349. DOI: https://doi.org/10.12688/f1000research.15859.1

[40] Ishimaru, T., Hirabayashi, H., Ida, M., et al., 2010. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany. 106(3), 515–520. DOI: https://doi.org/10.1093/aob/mcq124

[41] Ishimaru, T., Xaiyalath, S., Nallathambi, J., et al., 2016. Quantifying rice spikelet sterility in potential heat-vulnerable regions: Field surveys in Laos and Southern India. Field Crops Research. 190, 3–9.

[42] Arai-Sanoh, Y., Ishimaru, T., Ohsumi, A., et al., 2010. Effects of soil temperature on growth and root function in rice. Plant Production Science. 13(3), 235–242. DOI: https://doi.org/10.1626/pps.13.235

[43] Satake, T., Yoshida, S., 1978. High Temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science. 47(1), 6–17. DOI: https://doi.org/10.1626/jcs.47.6

[44] Svensson, B.H., 1984. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Applied and Environmental Microbiology. 48(2), 389–394. DOI: https://doi.org/10.1128/aem.48.2.389-394.1984

[45] Parashar, D.C., Gupta, P.K., Rai, J., et al., 1993. Effect of soil temperature on methane emission from paddy fields. Chemosphere. 26(1–4), 247–250. DOI: https://doi.org/10.1016/0045-6535(93)90425-5

[46] Cicerone, R.J., Oremland R.S., 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles. 2(4), 299–327. DOI: https://doi.org/10.1029/GB002i004p00299

[47] Lee, H.J., Kim, S.Y., Kim, P.J., et al., 2014. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. FEMS Microbiology Ecology. 88(1), 195–212. DOI: https://doi.org/10.1111/1574-6941.12282

[48] Xu, X., Zhang, M., Xiong, Y., et al., 2020. The influence of soil temperature, methanogens and methanotrophs on methane emissions from cold waterlogged paddy fields. Journal of Environmental Management. 264, 110421. DOI: https://doi.org/10.1016/j.jenvman.2020.110421

[49] Schutz H., Seiler W., Conrad R. 1990. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry. 11, 77–95.

[50] Zhu, D., Wu, N., Bhattarai, N., et al., 2020. Methane emissions respond to soil temperature in convergent patterns but divergent sensitivities across wetlands along altitude. Global Change Biology. 27(4), 941–955. DOI: https://doi.org/10.1111/gcb.15454

[51] Luo, G.J., Kiese, R., Wolf, B., et al., 2013. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences. 10, 3205–3219, DOI: https://doi.org/10.5194/bg-10-3205-2013

[52] Pham, H.Q., Pavelka, M., Dušek, J., et al., 2022. Net ecosystem exchange of carbon dioxide in rice summer–autumn crop of the lower Mekong delta, Vietnam. IOP Conference Series Earth and Environmental Science. 1116(1), 012079. DOI: https://doi.org/10.1088/1755-1315/1116/1/012079

[53] Zhang W., Xu M., Wang X., et al., 2012. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils and Sediments. 12, 457–470. DOI: https://doi.org/10.1007/s11368-011-0467-8

Downloads

How to Cite

Bui Thi Ngoc Oanh, Vo Huynh Huong, & Elaine Alio. (2025). Higher Methane Emission Rates in the Vegetative Rice Growing Stages in the Lower Mekong Delta, Vietnam. Journal of Environmental & Earth Sciences, 7(5), 175–187. https://doi.org/10.30564/jees.v7i5.8745