Companies’ E-waste Estimation Based on General Equilibrium Theory Context and Random Forest Regression Algorithm in Cameroon: Case Study of SMEs Implementing ISO 14001:2015

Authors

  • Gilson Tekendo Djoukoue

    School of Management, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China

  • Idriss Djiofack Teledjieu

    School of Artificial Intelligence, Xidian University, Xi’an, Shaanxi, 710071, China

  • Sijun Bai

    School of Management, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China

DOI:

https://doi.org/10.30564/jmser.v6i2.5862

Abstract

Given the challenge of estimating or calculating quantities of waste electrical and electronic equipment (WEEE) in developing countries, this article focuses on predicting the WEEE generated by Cameroonian small and medium enterprises (SMEs) that are engaged in ISO 14001:2015 initiatives and consume electrical and electronic equipment (EEE) to enhance their performance and profitability. The methodology employed an exploratory approach involving the application of general equilibrium theory (GET) to contextualize the study and generate relevant parameters for deploying the random forest regression learning algorithm for predictions. Machine learning was applied to 80% of the samples for training, while simulation was conducted on the remaining 20% of samples based on quantities of EEE utilized over a specific period, utilization rates, repair rates, and average lifespans. The results demonstrate that the model’s predicted values are significantly close to the actual quantities of generated WEEE, and the model’s performance was evaluated using the mean squared error (MSE) and yielding satisfactory results. Based on this model, both companies and stakeholders can set realistic objectives for managing companies’ WEEE, fostering sustainable socio-environmental practices.

Keywords:

Electrical and electronic equipment (EEE); Waste from electrical and electronic equipment (WEEE); General equilibrium theory; Random forest regression algorithm; Decision-making; Cameroon

References

[1] Ingole, A.R., 2018. E-waste its advance collection system and innovative application in field of civil and environmental engineering. LAP LAMBERT Academic Publishing: Bangkok.

[2] Maphosa, V., Maphosa, M., 2020. E-waste management in Sub-Saharan Africa: A systematic literature review. Cogent Business & Management. 7(1), 1814503. DOI: https://doi.org/10.1080/23311975.2020.1814503

[3] Bâle, S.E., 2012. DEee en Afrique : Etat des lieux-Résultats du Programme e-waste Africa de la convention de Bâle (French) [DEee in Africa: State of play-Results of the Basel Convention’s e-waste Africa programme]. 11-13 chemin des Anémones 1219 Châtelaine, Switzerland: Secretariat of the Basel Convention.

[4] Bakhiyi, B., Gravel, S., Ceballos, D., et al., 2018. Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environment International. 110, 173-192. DOI: https://doi.org/10.1016/j.envint.2017.10.021

[5] Perkins, D.N., Drisse, M.N.B., Nxele, T., et al., 2014. E-waste: A global hazard. Annals of Global Health. 80(4), 286-295.

[6] Jiang, B., Adebayo, A., Jia, J., et al., 2019. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. Journal of Hazardous Materials. 362, 187-195. DOI: https://doi.org/10.1016/j.jhazmat.2018.08.060

[7] Rautela, R., Arya, S., Vishwakarma, S., et al., 2021. E-waste management and its effects on the environment and human health. Science of the Total Environment. 773, 145623. DOI: https://doi.org/10.1016/j.scitotenv.2021.145623

[8] Dai, Q., Xu, X., Eskenazi, B., et al., 2020. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. Environment International. 139, 105731. DOI: https://doi.org/10.1016/j.envint.2020.105731

[9] Asante, K.A., Amoyaw-Osei, Y., Agusa, T., 2019. E-waste recycling in Africa: Risks and opportunities. Current Opinion in Green and Sustainable Chemistry. 18, 109-117. DOI: https://doi.org/10.1016/j.cogsc.2019.04.001

[10] Mihai, F.C., Gnoni, M.G., Meidiana, C., et al., 2019. Chapter 1-Waste electrical and electronic equipment (WEEE): Flows, quantities, and management—A global scenario. Electronic waste management and treatment technology. Elsevier: USA. pp. 1-34. DOI: https://doi.org/10.1016/B978-0-12-816190-6.00001-7

[11] Arrêté conjoint n°005/minepded/Mincommerce du 24 octobre 2012 Fixant les conditions spécifiques de Gestion des équipements électriques et Électroniques ainsi que de l’élimination Des déchets issus de ces équipements (French)[Joint Judgment No. 005/Mined/MinCommerce of October 24, 2012] [Internet]. Available from: https://minepded.gov.cm/wp-content/uploads/2021/09/Arr%C3%AAt%C3%A9-conjoint-N%C2%B0005-MINEPDED-MINCOMMERCE-du-24-octobre-2012.pdf

[12] Bertolini, G., 2003. La régulation des mouvements trans-frontières de déchets. Un dispositif à consolider (French)[Regulating cross-border movements of waste. A system to be consolidated]. Géographie Économie Société. 5(1), 91-105.

[13] Loi N°96/12 Du 5 Aout 1996 Portant Loi-Cadre Relative A La Gestion De L’Environnement. (French) [Law No. 96/12 of August 5, 1996 on the Framework Law on Environmental Management] [Internet]. Available from: https://www. snh.cm/images/reglementation/FR/Loi%20cadre-gestion%20de%20l’environnement.pdf

[14] Achankeng, E. (editor), 2003. Globalization, urbanization and municipal solid waste management in Africa. Proceedings of the African Studies Association of Australasia and the Pacific 26th Annual Conference; 2003 Oct 1-3; Adelaide, Australia. p. 1-22.

[15] Forti, V., Baldé, C.P., Kuehr, R., 2018. E-waste Statistics Guidelines on Classification, Reporting and Indicators [Internet]. Available from: https://collections.unu.edu/eserv/UNU:6477/RZ_EWaste_Guidelines_LoRes.pdf

[16] Amoyaw-Osei, Y., Agyekum, O.O., Pwamang, J.A., et al., 2011. Ghana e-Waste Country Assessment. SBC e-Waste Africa Project [Internet]. Available from: https://www.basel.int/Portals/4/Basel%20Convention/docs/eWaste/E-wasteAssessmentGhana.pdf

[17] Hameed, S.A. (editor), 2012. Controlling computers and electronics waste: Toward solving environmental problems. 2012 International Conference on Computer and Communication Engineering (ICCCE); 2012 Jul 3-5; Kuala Lumpur, Malaysia. New York: IEEE. p. 972-977.

[18] Otake, T., Yoshinaga, J., Yanagisawa, Y., 2001. Analysis of organic esters of plasticizer in indoor air by GC−MS and GC−FPD. Environmental Science & Technology. 35(15), 3099-3102.

[19] Hedman, B., Näslund, M., Nilsson, C., et al., 2005. Emissions of polychlorinated dibenzodioxins and dibenzofurans and polychlorinated biphenyls from uncontrolled burning of garden and domestic waste (backyard burning). Environmental Science & Technology. 39(22), 8790-8796.

[20] Grimes, S.M., Lateef, H., Jafari, A.J., et al., 2006. Studies of the effects of copper, copper (II) oxide and copper (II) chloride on the thermal degradation of poly (vinyl chloride). Polymer Degradation and Stability. 91(12), 3274-3280.

[21] Brigden, K., Labunska, I., Santillo, D., et al., 2008. Chemical Contamination at E-waste Recycling and Disposal Sitesin Accra and Korforidua, Ghana [Internet]. Available from: https://www.greenpeace.to/publications/chemical-contamination-at-e-wa.pdf

[22] Sivaramanan, S., 2013. E-waste management, disposal and its impacts on the environment. Universal Journal of Environmental Research & Technology. 3(5), 531-537. DOI: https://doi.org/10.13140/2.1.2978.0489

[23] Kyere, V.N., Greve, K., Atiemo, S.M., 2016. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana. Environmental Health and Toxicology. 31, 1-10. DOI: https://doi.org/10.5620/eht.e2016006

[24] Affum, A.O., Osae, S.D., Kwaansa-Ansah, E.E., et al., 2020. Quality assessment and potential health risk of heavy metals in leafy and nonleafy vegetables irrigated with groundwater and municipal-waste-dominated stream in the Western Region, Ghana. Heliyon. 6(12). DOI: https://doi.org/10.1016/j.heliyon.2020.e05829

[25] Adomako, E.E., Raab, A., Norton, G.J., et al., 2022. Potential Toxic Element (PTE) soil concentrations at an urban unregulated Ghanaian e-waste recycling centre: Environmental contamination, human exposure and policy implications. Exposure and Health. 1-10. DOI: https://doi.org/10.1007/s12403-022-00516-x

[26] Nana, A.S., Falkenberg, T., Rechenburg, A., et al., 2023. Seasonal variation and risks of poten-tially toxic elements in agricultural lowlands of central Cameroon. Environmental Geochemistry and Health. 45, 4007-4023. DOI: https://doi.org/10.1007/s10653-022-01473-9

[27] Srigboh, R.K., Basu, N., Stephens, J., et al., 2016. Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. Chemosphere. 164, 68-74. DOI: https://doi.org/10.1016/j.chemosphere. 2016.08.089

[28] Asampong, E., Dwuma-Badu, K., Stephens, J., et al., 2015. Health seeking behaviours among electronic waste workers in Ghana. BMC Public Health. 15, 1-9. DOI: https://doi.org/10.1186/s12889-015-2376-z

[29] Asamoah, A., Essumang, D.K., Muff, J., et al., 2018. Assessment of PCBs and exposure risk to infants in breast milk of primiparae and multiparae mothers in an electronic waste hot spot and non-hot spot areas in Ghana. Science of the Total Environment. 612, 1473-1479. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.177

[30] Amankwaa, E.F., Tsikudo, K.A.A., Bowman, J.A., 2017. ‘Away’ is a place: The impact of electronic waste recycling on blood lead levels in Ghana. Science of the Total Environment. 601, 1566-1574. DOI: https://doi.org/10.1016/j.scitotenv.2017.05.283

[31] Jagun, Z.T., Daud, D., Ajayi, O.M., et al., 2022. Waste management practices in developing countries: A socio-economic perspective. Environmental Science and Pollution Research. 1-12. DOI: https://doi.org/10.1007/s11356-022-21990-5

[32] Yamaguchi, S., 2018. International Trade and the Transition to a More Resource Efficient and Circular Economy [Internet]. Available from: https://doi.org/10.1787/847feb24-en

[33] Golsteijn, L., Valencia Martinez, E., 2017. The circular economy of E-waste in the Netherlands: Optimizing material recycling and energy recovery. Journal of Engineering. 8984013. DOI: https://doi.org/10.1155/2017/8984013

[34] Mounir, R., 2022. Les défis de l’adoption de l’économie circulaire: cas de la Chine (French) [The challenges of adopting the circular economy: The case of China]. Finance & Business Economies Review. 6(1).

[35] Kumar Singh, S., Chauhan, A., Sarkar, B., 2022. Supply chain management of e-waste for end of-life electronic products with reverse logistics. Mathematics. 11(1), 124. DOI: https://doi.org/10.3390/math11010124

[36] Srivastav, A.L., Markandeya, Patel, N., Pandey, M., et al., 2023. Concepts of circular economy for sustainable management of electronic wastes: Challenges and management options. Environmental Science and Pollution Research. 30(17), 48654-48675. DOI: https://doi.org/10.1007/s11356-023-26052-y

[37] Zeng, X., Ali, S.H., Tian, J., et al., 2020. Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nature Communications. 11(1), 1544. DOI: https://doi.org/10.1038/s41467-020-15246-4

[38] Duman, G.M., Kongar, E., Gupta, S.M., 2019. Estimation of electronic waste using optimized multivariate grey models. Waste Management. 95, 241-249. DOI: https://doi.org/10.1016/j.wasman.2019.06.023

[39] Islam, M.T., Huda, N., 2019. E-waste in Australia: Generation estimation and untapped material recovery and revenue potential. Journal of Cleaner Production. 237, 117787. DOI: https://doi.org/10.1016/j.jclepro.2019.117787

[40] Ravindra, K., Mor, S., 2019. E-waste generation and management practices in Chandigarh, India and economic evaluation for sustainable recycling. Journal of Cleaner Production. 221, 286-294. DOI: https://doi.org/10.1016/j.jclepro.2019.02.158

[41] Awasthi, A.K., Cucchiella, F., D’Adamo, I., et al., 2018. Modelling the correlations of e-waste quantity with economic increase. Science of the Total Environment. 613, 46-53. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.288

[42] Tran, H.P., Wang, F., Dewulf, J., et al., 2016. Estimation of the unregistered inflow of electricaland electronic equipment to a domestic market: A case study on televisions in Vietnam. Environmental Science & Technology. 50(5), 2424-2433. DOI: https://doi.org/10.1021/acs.est.5b01388

[43] He, P., Wang, C., Zuo, L., 2018. The present and future availability of high-tech minerals in waste mobile phones: Evidence from China. Journal of Cleaner Production. 192, 940-949. DOI: https://doi.org/10.1016/j.jclepro.2018.04.222

[44] Babayemi, J.O., Osibanjo, O., Weber, R., 2017. Material and substance flow analysis of mobile phones in Nigeria: A step for progressing e-waste management strategy. Journal of Material Cycles and Waste Management. 19, 731-742. DOI: https://doi.org/10.1007/s10163-016-0472-5

[45] Guo, X., Yan, K., 2017. Estimation of obsolete cellular phones generation: A case study of China. Science of the Total Environment. 575, 321-329. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.054

[46] Gomes, A.S., Souza, L.A., Yamane, L.H., et al., 2017. Quantification of e-waste: A case study in Federal University of Espírito Santo, Brazil. International Journal of Environmental and Ecological Engineering. 11(2), 195-203.

[47] Kumar, A., Holuszko, M., Espinosa, D.C.R., 2017. E-waste: An overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling. 122, 32-42. DOI: https://doi.org/10.1016/j.resconrec.2017.01.018

[48] Kusch, S., Hills, C.D., 2017. The link between e-waste and GDP—New insights from data from the pan-European region. Resources. 6(2), 15. DOI: https://doi.org/10.3390/resources6020015

[49] Parajuly, K., Habib, K., Liu, G., 2017. Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management. Resources, Conservation and Recycling. 123, 85-92. DOI: https://doi.org/10.1016/j.resconrec.2016.08.004

[50] Dasgupta, D., Debsarkar, A., Hazra, T., et al., 2017. Scenario of future e-waste generation and recycle-reuse-landfill-based disposal pattern in India: A system dynamics approach. Environment, Development and Sustainability. 19, 1473-1487. DOI: https://doi.org/10.1007/s10668-016-9815-6

[51] Hamouda, K., Rotter, V., Korf, N. (editors), 2016. Methodological approach to improving WEEE assessment in emerging economies. Electronics Goes Green 2016+; 2016 Sep 6-9; Berlin, Germany. New York: IEEE. DOI: https://doi.org/10.1109/EGG.2016.7829844

[52] Ikhlayel, M., 2016. Differences of methods to estimate generation of waste electrical and electronic equipment for developing countries: Jordan as a case study. Resources, Conservation and Recycling. 108, 134-139. DOI: http://dx.doi.org/10.1016/j.resconrec.2016.01.015

[53] Petridis, N.E., Stiakakis, E., Petridis, K., et al., 2016. Estimation of computer waste quantities using forecasting techniques. Journal of Cleaner Production. 112, 3072-3085. DOI: https://doi.org/10.1016/j.jclepro.2015.09.119

[54] Cao, J., Chen, Y., Shi, B., et al., 2016. WEEE recycling in Zhejiang Province, China: Generation, treatment, and public awareness. Journal of Cleaner Production. 127, 311-324. DOI: https://doi.org/10.1016/j.jclepro.2016.03.147

[55] Neto, J.C., Silva, M.M., Santos, S.M., 2016. A time series model for estimating the generation of lead acid battery scrap. Clean Technologies and Environmental Policy. 18, 1931-1943. DOI: https://doi.org/10.1007/s10098-016-1121-3

[56] L’équilibre général comme savoir: de Walras à nos jours (French) [General equilibrium as knowledge: From Walras to the present day]. HAL Open Science [Internet]. Available from: https://hal.science/hal-01765036

[57] Plambeck, E., Wang, Q., 2009. Effects of e-waste regulation on new product introduction. Management Science. 55(3), 333-347. DOI: https://doi.org/10.1287/mnsc.1080.0970

[58] Wakolbinger, T., Toyasaki, F., Nowak, T., et al., 2014. When and for whom would e-waste be a treasure trove? Insights from a network equilib-rium model of e-waste flows. International Journal of Production Economics. 154, 263-273. DOI: https://doi.org/10.1016/j.ijpe.2014.04.025

[59] Nagurney, A., Toyasaki, F., 2005. Reverse supply chain management and electronic waste recycling: A multitiered network equilibrium framework for e-cycling. Transportation Research Part E: Logistics and Transportation Review. 41(1), 1-28. DOI: https://doi.org/10.1016/j.tre.2003.12.001

[60] Hammond, D., Beullens, P., 2007. Closed-loop supply chain network equilibrium under legislation. European Journal of Operational Research. 183(2), 895-908. DOI: https://doi.org/10.1016/j.ejor.2006.10.033

[61] Chen, P.C., Hong, I.H., 2013. Government subsidy impacts on a decentralized reverse supply chain using a multitiered network equilibrium model. Proceedings of the Institute of Industrial Engineers Asian Conference 2013. Springer: Singapore. pp. 173-180. DOI: https://doi.org/10.1007/978-981-4451-98-7_21

[62] Hong, I.H., Chen, P.C., Yu, H.T., 2016. The effects of government subsidies on decentralised reverse supply chains. International Journal of Production Research. 54(13), 3962-3977. DOI: https://doi.org/10.1080/00207543.2016.1167982

[63] Elshennawy, A., Robinson, S., Willenbockel, D., 2016. Climate change and economic growth: An intertemporal general equilibrium analysis for Egypt. Economic Modelling. 52, 681-689. DOI: https://doi.org/10.1016/j.econmod.2015.10.008

[64] Miyata, Y., 1995. A general equilibrium analysis of the waste-economic system a CGE modeling approach. Infrastructure Planning Review. 12, 259-270. DOI: https://doi.org/10.2208/journalip.12.259

[65] Simeone, O., 2018. A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking. 4(4), 648-664.

[66] Albon, C., 2018. Machine learning with python cookbook: Practical solutions from preprocessing to deep learning. O’Reilly Media, Incorporated: Sebastopol.

[67] Kurniawati, N., Putri, D.N.N., Ningsih, Y.K. (editors), 2020. Random forest regression for predicting metamaterial antenna parameters. 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE); 2020 Oct 20-21; Lombok, Indonesia. New York: IEEE. p. 174-178. DOI: https://doi.org/10.1109/ICIEE49813.2020.9276899

[68] Plan directeur d’urbanisme de Douala à l’horizon 2025 (French) [Douala Urban Master Plan to 2025]. Douala. Available from: https://www.fsmtoolbox.com/assets/pdf/Plan_Directeur_d_urbanisme.pdf

[69] Institut National de Statistique, 2021. Répertoire et démographie des entreprises modernes en 2018 (French)[Directory and demography of modern businesses in 2018]. Departement des Statistiques D’entreprises: Yaoundé.

Downloads

How to Cite

Tekendo Djoukoue, G., Djiofack Teledjieu, I., & Bai, S. (2023). Companies’ E-waste Estimation Based on General Equilibrium Theory Context and Random Forest Regression Algorithm in Cameroon: Case Study of SMEs Implementing ISO 14001:2015. Journal of Management Science & Engineering Research, 6(2), 60–81. https://doi.org/10.30564/jmser.v6i2.5862

Issue

Article Type

Article