Allyl Glycidyl Ether-modified Animal Glue Binder for Improved Water Resistance and Bonding Strength in Sand Casting

Authors

  • Chen-chen Fan The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
  • Qian Tang The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China

DOI:

https://doi.org/10.30564/opmr.v2i2.2384

Abstract

This paper aims to develop a modified animal glue sand binder for foundry casting with improved water resistance and bonding strength. An efficient method is reported by using sodium hydroxide as the catalyst to improve the operability of animal glue binder and allyl glycidyl ether as the modifier to improve the water resistance and bonding strength. Sand specimens prepared using allyl glycidyl ether-modified animal glue binder were cured by compressed air at room temperature. The proposed method saves energy and is environmentally friendly and inexpensive. Compared with unmodified animal glue binder, standard dog bone sand specimens with allyl glycidyl ether-modified animal glue binder had higher tensile strength of 2.58 MPa, flowability of 1.95 g, better water resistance (a lower decrease in tensile strength at 25 °C and relative humidity of 60%), and good collapsibility. This allyl glycidyl ether-modified animal glue binder is suitable for practical application in the foundry industry

Keywords:

Quartz sand; Modified animal glue; Casting binder; Allyl glycidyl ether; Water resistance

References

[1] F. Jorge Lino, T. Pereira Duarte. Ceramic components for foundry industry. J. Mater. Process Technol., 2003, 142, 628-633. DOI: https://doi.org/10.1016/S0924-0136(03)00682-4

[2] K. Sato, M. Kawai, Y. Hotta, T. Nagaoka, K. Watari. Production of ceramic green bodies using a microwave-reactive organic binder. J. Am. Ceram. Soc., 2007, 90: 1319-1322. DOI: https://doi.org/10.1111/j.1551-2916.2007.01524.x

[3] Y.S. Zhang, L. Xia, J. Huang. Study on a new inorganic binder for fabricating casting mold and core. Adv. Mater. Res., 2011, 287-290: 1603-1606. DOI: https://doi.org/10.4028/www.scientific.net/AMR.287-290.1603

[4] V. LaFay. Application of no-bake sodium silicate binder systems. Int. J. Metalcast., 2012, 6: 19-26. DOI: https://doi.org/10.1007/BF03355530

[5] J.T. Fox, J.F. Allen, F.S. Cannon, C.C. Cash, R.C. Voigt, J.A. DeVenne, J.C. Furness, J.S. Lamonski, P. Farver. Full-scale demonstration of a hybrid hydrolyzed collagen-alkali silicate core binder. Int. J. Metalcast., 2015, 9: 51-61. DOI: https://doi.org/10.1007/BF03355623

[6] S.G. Acharya, J.A.Vadher, M. Sheladiya. A furan nobake binder system analysis for improved castingquality. Int. J. Metalcast., 2016, 10: 491-499. DOI: https://doi.org/10.1007/s40962-016-0059-x

[7] L. Zaretskiy. Microsilica in sodium silicate bonded sands. Int. J. Metalcast., 2018, 13: 58-73. DOI: https://doi.org/10.1007/s40962-018-0247-y

[8] L. Zaretskiy. Modified silicate binders new developments and applications, Int. J. Metalcast., 2018, 10: 88-99. DOI: https://doi.org/10.1007/s40962-015-0005-3

[9] L. Zaretskiy. Hydrous solid silicates in new foundry binders. Int. J. Metalcast. 2017, 12: 275-291. DOI: https://doi.org/10.1007/s40962-017-0155-6

[10] K. Kosuge, M. Sunage, R. Goda, H. Onodera, T. Okane. Cure and collapse mechanism of inorganic mold using spherical artificial sand and water glass binder. Mater. Trans., 2018, 59: 1784-1790. DOI: https://doi.org/10.2320/matertrans.F-M2018838

[11] M. Stachowicz, K. Granat. Influence of wet activation of used inorganic binder on cyclically refreshed water glass moulding sands hardened by microwaves. China Foundry, 2016, 13: 427-432. DOI: https://doi.org/10.1007/s41230-016-5077-z

[12] L. Song, W.H. Liu, Y.M. Li, F.H. Xin. Humidity-resistant inorganic binder for sand core making in foundry practice. China Foundry, 2019, 16: 267-271. DOI: https://doi.org/10.1007/s41230-019-8169-8

[13] K. Kaczmarska, B. Grabowska, G. Grabowski, A. Bobrowski, Z. Kurleto-Kozioł, Thermal decomposition of binder based on etherified starch to use in foundry industry. J. Therm. Anal. Calorim., 2017, 130: 285-290. DOI: https://doi.org/10.1007/s10973-017-6451-9

[14] Z.J.Wang, Z.F. Li, Z.B. Gu, Y. Hong, L. Cheng. Preparation, characterization and properties of starchbased wood adhesive. Carbohydr. Polym., 2012, 88: 699-706. DOI: https://doi.org/10.1016/j.carbpol.2012.01.023

[15] Z. J. Wang, Z.B. Gu, Z. F. Li, Y. Hong, L. Cheng. Effects of urea on freeze-thaw stability of starch-based wood adhesive. Carbohydr. Polym., 2013, 95: 397- 403. DOI: https://doi.org/10.1016/j.carbpol.2013.02.009

[16] Y. H. Zhang, L. L. Ding, J.Y. Gu, H.Y. Tan, L.B. Zhu. Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. Carbohydr. Polym., 2015, 115: 32-37. DOI: https://doi.org/10.1016/j.carbpol.2014.08.063

[17] Z. J. Wang, Z. B. Gu, Y. Hong, L. Cheng, Z. F. Li. Bonding strength and water resistance of starchbased wood adhesive improved by silica nanoparticles, Carbohydr. Polym., 2011, 86: 72-76. DOI: https://doi.org/10.1016/j.carbpol.2011.04.003

[18] D. Kuakpetoon, Y. J. Wang. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr. Res., 2006, 341: 1896-1915. DOI: https://doi.org/10.1016/j.carres.2006.04.013

[19] C. Yang, X. Q. Song, C. Sun, M. Q. Chen, Y. L. Xu, X.Y. Liu, Z.B. Ni, Graft copolymerization of soybean protein isolate and methacrylic acid. J. Appl. Polym. Sci., 2006, 102: 4023-4029. DOI: https://doi.org/10.1002/app.23993

[20] G.Y. Qi, N. B. Li, D. H. Wang, X. S. Sun. Adhesion and physicochemical properties of soy protein modified by sodium bisulfite. J. Am. Oil. Chem. Soc., 2013, 90: 1917-1926. DOI: https://doi.org/10.1007/s11746-013-2343-8

[21] X. Zhou, J. Z. Yang, G. H. Qu. Study on synthesis and properties of modified starch binder for foundry. J. Mater. Process. Technol., 2007, 183: 407-411. DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.001

[22] W. B. Yu, H. He, N. P. Cheng, B. T. Gan, X. L. Li. Preparation and experiments for a novel kind of foundry core binder made from modified potato starch. Mater. Des., 2009, 30: 210-213. DOI: https://doi.org/10.1016/j.matdes.2008.03.017

[23] K. Kaczmarska, B. Grabowska, D. Drozynski, A. Bobrowski, Z. Kurleto, Ł. Szymanski. Modified polysaccharides as alternative binders for foundry industry. Metalurgija, 2016, 55: 839-842.

[24] T. S. Wang, W. H. Liu, Y.M. Li. Research on regeneration methods of animal glue waste sand for foundry. R. Soc. Open Sci., 2018, 5: 172270. DOI: https://doi.org/10.1098/rsos.172270

[25] W. H. Liu, T. S. Wang, Y.M. Li, Y.Y. Ren, W.H. Huo. Preparation of a new animal glue binder for foundry use. China Foundry, 2016, 13: 238-242. DOI: https://doi.org/10.1007/s41230-016-6029-3

[26] W.H. Liu, Y.L. Zhang, Y.M. Li, X.L. Liu. Optimization of a new animal glue binder system cured by CO2 for foundry use. China Foundry, 2012, 9: 356- 359.

[27] AFS Mold & Core Test Handbook, 5th edn. (The American Foundry Society), 2001. ISBN: 978-0-87433-467-8

[28] J. Duanmu, E. K. Gamstedt, A. Rosling. Synthesis and preparation of crosslinked allylglycidyl ether-modified starch-wood fibre composites. Starch/ Stärke, 2007, 59: 523-532. DOI: https://doi.org/10.1002/star.200700629

Downloads

How to Cite

Fan, C.- chen, & Tang, Q. (2020). Allyl Glycidyl Ether-modified Animal Glue Binder for Improved Water Resistance and Bonding Strength in Sand Casting. Organic Polymer Material Research, 2(2), 1–7. https://doi.org/10.30564/opmr.v2i2.2384

Issue

Article Type

Article