Carbon Footprint of the National University of Juliaca: Establishing a Baseline for Future Management in an Emerging and Developing Institution

Authors

  • Godofredo Huanca-Chambi

    1. Applied Sciences Research Group , National University of Juliaca, Juliaca 21101, Peru; 2. Engineering, Environment and Society Research Group , National University of Juliaca, Juliaca 21101, Peru

  • Mauro Marin Quispe-Coanqui

    Engineering, Environment and Society Research Group , National University of Juliaca, Juliaca 21101, Peru

  • Milton Quispe-Tisnado

    1. Applied Sciences Research Group , National University of Juliaca, Juliaca 21101, Peru; 2. Engineering, Environment and Society Research Group , National University of Juliaca, Juliaca 21101, Peru

  • Diego de la Cruz-Paredes

    Applied Sciences Research Group , National University of Juliaca, Juliaca 21101, Peru

  • Reyder Orlando Sucapuca-Mamani

    Applied Sciences Research Group , National University of Juliaca, Juliaca 21101, Peru

  • Winsthon Fredy Ramos-Rojas

    Applied Sciences Research Group , National University of Juliaca, Juliaca 21101, Peru

DOI:

https://doi.org/10.30564/jees.v7i8.10125
Received: 21 May 2025 | Revised: 30 June 2025 | Accepted: 3 July 2025 | Published Online: 13 August 2025

Abstract

This study aimed to quantify the carbon footprint of the National University of Juliaca (UNAJ) for the year 2023, in order to identify the main sources of greenhouse gas (GHG) emissions and provide a foundation for implementing sustainable policies. The methodology was based on the greenhouse gas inventory approach outlined in ISO 14064-1, applying the operational control method to measure both direct and indirect emissions. Data on energy consumption, transportation, and purchased goods and services were collected using digital tools and surveys, and emissions were calculated in metric tons of CO₂ equivalent (tCO₂e). The results indicate that UNAJ’s total carbon footprint in 2023 was 1,461.03 tCO₂e, with per capita emissions of 0.47 tCO₂e per person. The main sources of emissions were transportation, accounting for 75.88% of total emissions, followed by the consumption of goods and services (14.29%) and energy use (5.12%). Despite limitations in solid waste management, the study makes a valuable contribution to the development of sustainability strategies, emphasizing the urgent need for sustainable mobility policies, energy efficiency measures, and the adoption of responsible procurement practices. Furthermore, it highlights the importance of achieving carbon neutrality at UNAJ as a key objective in mitigating its environmental impact. The findings provide relevant insights from the Peruvian context and offer a basis for analyzing emissions at local universities, with practical implications for enhancing environmental management in higher education institutions.

Keywords:

Carbon Footprint; Greenhouse Gases; Higher Education Institutions; University; ISO 14064-1

References

[1] Wu, X., Hu, S., Mo, S., 2013. Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems. Journal of Cleaner Production. 54, 115–124. DOI: https://doi.org/10.1016/J.JCLEPRO.2013.04.045

[2] Ahmad, K., Younas, Z.I., Manzoor, W., et al., 2023. Greenhouse gas emissions and corporate social responsibility in USA: a comprehensive study using dynamic panel model. Heliyon. 9(3), e13979. DOI: https://doi.org/10.1016/J.HELIYON.2023.E13979

[3] Yue, X.L., Gao, Q.X., 2018. Contributions of natural systems and human activity to greenhouse gas emissions. Advances in Climate Change Research. 9(4), 243–252. DOI: https://doi.org/10.1016/J.ACCRE.2018.12.003

[4] Filonchyk, M., Peterson, M.P., Zhang, L., et al., 2024. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Science of The Total Environment. 935, 173359. DOI: https://doi.org/10.1016/J.SCITOTENV.2024.173359

[5] Shields, R., 2019. The sustainability of international higher education: student mobility and global cli-mate change. Journal of Cleaner Production. 217, 594–602. DOI: https://doi.org/10.1016/J.JCLEPRO.2019.01.291

[6] Wynes, S., Donner, S.D., Tannason, S., et al., 2019. Academic air travel has a limited influence on professional success. Journal of Cleaner Production. 226, 959–967. DOI: https://doi.org/10.1016/J.JCLEPRO.2019.04.109

[7] Hawkins, D., Hong, S.M., Raslan, R., et al., 2012. Determinants of energy use in UK higher education buildings using statistical and artificial neural network methods. International Journal of Sustainable Built Environment. 1(1), 50–63. DOI: https://doi.org/10.1016/J.IJSBE.2012.05.002

[8] Parece, T.E., Grossman, L., Geller, E.S., 2013. Reducing Carbon Footprint of Water Consumption: A Case Study of Water Conservation at a University Campus. In: Whitacre, D.M. (ed.). Handbook of Environmental Chemistry, Vol. 25. Springer: Berlin, Germany. pp. 199–218. DOI: https://doi.org/10.1007/698_2013_227

[9] Filho, W.L., Aina, Y.A., Dinis, M.A.P., et al., 2023. Climate change: why higher education matters? Science of The Total Environment. 892, 164819. DOI: https://doi.org/10.1016/J.SCITOTENV.2023.164819

[10] Francis, M., Moore, T., 2019. University Buildings: The Push and Pull for Sustainability. In: Filho, W.L. (ed.). Green Energy and Technology. Springer: Singapore. pp. 131–147. DOI: https://doi.org/10.1007/978-981-10-7880-4_9

[11] Paredes-Canencio, K.N., Lasso, A., Castrillon, R., et al., 2024. Carbon footprint of higher education institutions. Environment, Development and Sustainability. 26(12), 30239–30272. DOI: https://doi.org/10.1007/S10668-024-04596-4/METRICS

[12] D’Apuzzo, M., Silvestri, A., Nardoianni, S., et al., 2024. Towards the evaluation of carbon footprint for university communities’ mobility: Challenges, opportunities, and reduction strategies. Proceedings of The 3rd International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART 2024); April 15–17, 2024; Istanbul, Turkey. DOI: https://doi.org/10.1109/SMART63170.2024.10815400

[13] Groß, B., 2024. Greenhouse Gas Emissions of Universities: Chances and Challenges on the Way to Greenhouse Gas Neutrality. In: Benčina, J., Verbič, M. (eds.). Transition to Green University Governance. University of Maribor Press: Maribor, Slovenia. pp. 99–108. DOI: https://doi.org/10.18690/UM.EPF.5.2024.10

[14] Cano, N., Berrio, L., Carvajal, E., et al., 2023. Assessing the carbon footprint of a Colombian university campus using the UNE-ISO 14064–1 and WRI/WBCSD GHG protocol corporate standard. Environmental Science and Pollution Research. 30(2), 3980–3996. DOI: https://doi.org/10.1007/S11356-022-22119-4/FIGURES/4

[15] Battistini, R., Passarini, F., Marrollo, R., et al., 2022. How to assess the carbon footprint of a large university? The case study of University of Bologna’s multicampus organization. Energies. 16(1), 166. DOI: https://doi.org/10.3390/EN16010166

[16] Singh, A.N., Anuj, Singhal, C., et al., 2023. Strategies for reducing carbon footprints: a cross-sectional study of experts’ opinion. European Economic Letters (EEL). 13(1), 297–303. DOI: https://doi.org/10.52783/EEL.V13I1.171

[17] Melville-Rea, K., Arndt, S.K., 2024. Net-zero heroes? Climate change mitigation efforts and strategies across Australian Group-of-Eight universities. Sustainability. 16(7), 2937. DOI: https://doi.org/10.3390/SU16072937

[18] Getzinger, G., Schmitz, D., Mohnke, S., et al., 2019. The carbon footprint of universities in Austria. Method, results and strategies for the reduction of greenhouse gas emissions. GAIA - Ecological Perspectives for Science and Society. 28(4), 389–391. DOI: https://doi.org/10.14512/GAIA.28.4.13 (in German)

[19] Filho, W.L., Weissenberger, S., Luetz, J.M., et al., 2023. Towards a greater engagement of universities in addressing climate change challenges. Scientific Reports. 13(1), 1–13. DOI: https://doi.org/10.1038/s41598-023-45866-x

[20] Clabeaux, R., Carbajales-Dale, M., Ladner, D., et al., 2020. Assessing the carbon footprint of a university campus using a life cycle assessment approach. Journal of Cleaner Production. 273, 122600. DOI: https://doi.org/10.1016/J.JCLEPRO.2020.122600

[21] Robinson, O., Kemp, S., Williams, I., 2015. Carbon management at universities: a reality check. Journal of Cleaner Production. 106, 109–118. DOI: https://doi.org/10.1016/J.JCLEPRO.2014.06.095

[22] Liu, G., Liu, J., Zhao, J., et al., 2023. Real-time corporate carbon footprint estimation methodology based on appliance identification. IEEE Transactions on Industrial Informatics. 19(2), 1401–1412. DOI: https://doi.org/10.1109/TII.2022.3154467

[23] Osorio, A.M., Úsuga, L.F., Vásquez, R.E., et al., 2022. Towards carbon neutrality in higher education institutions: case of two private universities in Colombia. Sustainability. 14(3), 1774. DOI: https://doi.org/10.3390/SU14031774

[24] Alvarez, V., Austin, M.C., Rodriguez, Z., et al., 2022. Sustainability actions towards neutral carbon footprint higher education institutions: a systematic review. Proceedings of the 2022 8th International Engineering, Sciences and Technology Conference (IESTEC 2022); October 12–14, 2022; Panama City, Panama. pp. 608–615. DOI: https://doi.org/10.1109/IESTEC54539.2022.00101

[25] Skrzypczak, D., Gorazda, K., Mikula, K., et al., 2025. Towards carbon neutrality: enhancing CO₂ sequestration by plants to reduce carbon footprint. Science of The Total Environment. 966, 178763. DOI: https://doi.org/10.1016/J.SCITOTENV.2025.178763

[26] García-Alaminos, J., Gilles, E., Monsalve, F., et al., 2022. Measuring a university’s environmental performance: a standardized proposal for carbon footprint assessment. Journal of Cleaner Production. 357, 131783. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.131783

[27] Ma, B., Bashir, M.F., Peng, X., et al., 2023. Analyzing research trends of universities’ carbon footprint: an integrated review. Gondwana Research. 121, 259–275. DOI: https://doi.org/10.1016/J.GR.2023.05.008

[28] Wieser, M., Rodríguez-Larraín, S., Onnis, S., 2021. Bioclimatic strategies for tropical highland cold climates: prototype validation in Orduña, Puno, Peru. Revista de La Facultad de Arquitectura y Urbanismo de La Universidad de Cuenca. 10(19), 10–21. DOI: https://doi.org/10.18537/EST.V010.N019.A01 (in Spanish)

[29] SENAMHI, 2024. Technical report: analysis of rainfall behavior, flow rates, and water levels in the department of Puno for the 2023–2024 hydrological year and forecast for September–November. Available from: https://www.gob.pe/institucion/senamhi/informes-publicaciones/5951511-analisis-del-comportamiento-de-la-lluvia-caudales-y-niveles-de-agua-en-el-departamento-de-puno-durante-el-ano-hidrologico-2023-2024-y-su-pronostico-para-setiembre-a-noviembre-2024 (cited 29 April 2025) (in Spanish)

[30] Ihobe, 2012. Methodological guidelines for the implementation of the UNE-ISO 14064-1:2006 standard. Available from: https://www.euskadi.eus/contenidos/documentacion/uneiso14064/es_def/adjuntos/PUB-2012-019-f-C-001.pdf (cited 29 April 2025) (in Spanish)

[31] MINAM, 2020a. Guidelines for the Operation of the Carbon Footprint Peru (Ministerial Resolution No. 237-2020-MINAM). Available from: https://www.gob.pe/institucion/minam/normas-legales/1364262-237-2020-minam (cited 29 April 2025) (in Spanish)

[32] MINAM, 2020b. Framework Law on Climate Change (Law N° 30754). Available from: https://cdn.www.gob.pe/uploads/document/file/1230066/200812_Ley_Marco_sobre_Cambio_Clim%C3%A1tico.pdf (cited 29 April 2025) (in Spanish)

[33] Varón-Hoyos, M., Osorio-Tejada, J., Morales-Pinzón, T., 2021. Carbon footprint of a university campus from Colombia. Carbon Management. 12(1), 93–107. DOI: https://doi.org/10.1080/17583004.2021.1876531

[34] Helmers, E., Chang, C.C., Dauwels, J., 2021. Carbon footprinting of universities worldwide: part I—objective comparison by standardized metrics. Environmental Sciences Europe. 33(1), 1–25. DOI: https://doi.org/10.1186/S12302-021-00454-6/FIGURES/7

[35] Pearce, J.M., Miller, L.L., 2006. Energy service companies as a component of a comprehensive university sustainability strategy. International Journal of Sustainability in Higher Education. 7(1), 16–33. DOI: https://doi.org/10.1108/14676370610639227/FULL/XML

[36] Chu, L.K., Doğan, B., Abakah, E.J.A., et al., 2022. Impact of economic policy uncertainty, geopolitical risk, and economic complexity on carbon emissions and ecological footprint: an investigation of the E7 countries. Environmental Science and Pollution Research. 30(12), 34406–34427. DOI: https://doi.org/10.1007/S11356-022-24682-2

[37] Stephan, A., Muñoz, S., Healey, G., et al., 2020. Analysing material and embodied environmental flows of an Australian university—Towards a more circular economy. Resources, Conservation and Recycling. 155, 104632. DOI: https://doi.org/10.1016/J.RESCONREC.2019.104632

[38] Kiehle, J., Kopsakangas-Savolainen, M., Hilli, M., et al., 2023. Carbon footprint at institutions of higher education: the case of the University of Oulu. Journal of Environmental Management. 329, 117056. DOI: https://doi.org/10.1016/J.JENVMAN.2022.117056

[39] Samara, F., Ibrahim, S., Yousuf, M.E., et al., 2022. Carbon footprint at a United Arab Emirates university: GHG Protocol. Sustainability. 14(5), 2522. DOI: https://doi.org/10.3390/SU14052522

[40] Valls-Val, K., Bovea, M.D., 2022. Carbon footprint assessment tool for universities: CO₂UNV. Sustainable Production and Consumption. 29, 791–804. DOI: https://doi.org/10.1016/J.SPC.2021.11.020

[41] Baker, T., Aples, N., Daye, A., et al., 2024. Sustainability in action: carbon footprint assessment of the University of Technology, Jamaica. Proceedings of The LACCEI International Multi-Conference for Engineering, Education and Technology; July 17–21, 2024; Montego Bay, Jamaica. DOI: https://doi.org/10.18687/LACCEI2024.1.1.1882

[42] Admas, M.M., Mensah, L.D., Dzebre, D.E.K., et al., 2025. Estimating the carbon footprint of Ethiopian higher education institutions: a case study of Debre Markos University. Results in Engineering. 26, 104911. DOI: https://doi.org/10.1016/J.RINENG.2025.104911

[43] Gálvez-Campos, B., Escobar, F.S., De León Alvarado, A., et al., 2025. Greenhouse gas emissions of a university campus in Guatemala: foundations for a carbon-neutral footprint by 2040. Revista Internacional de Contaminación Ambiental. 41, 27–37. DOI: https://doi.org/10.20937/RICA.55235 (in Spanish)

[44] Peralta, A.H., Mamani, J.C.Q., 2024. The ecological footprint of the National University of the Altiplano, Peru: a tool for sustainable management. Sustainability. 16(15), 6672. DOI: https://doi.org/10.3390/SU16156672

Downloads

How to Cite

Huanca-Chambi , G., Quispe-Coanqui, M. M., Quispe-Tisnado , M., de la Cruz-Paredes , D., Sucapuca-Mamani , R. O., & Ramos-Rojas, W. F. (2025). Carbon Footprint of the National University of Juliaca: Establishing a Baseline for Future Management in an Emerging and Developing Institution. Journal of Environmental & Earth Sciences, 7(8), 36–50. https://doi.org/10.30564/jees.v7i8.10125