
Eco-Friendly Amylase Production and Immobilization on Macadamia Based Carbon Using Aspergillus niger
DOI:
https://doi.org/10.30564/jees.v7i7.10349Abstract
This study demonstrates the valorization of macadamia nutshells, a lignocellulosic agricultural waste, as both a carbon source for amylase production and a support matrix for enzyme immobilization. Under optimized solid-state fermentation conditions, Aspergillus niger ICP2 synthesized amylase with a peak activity of 0.312 U/mL after 72 hours. A four-step purification process of the crude enzyme extract resulted in a 188.54-fold increase in specific activity, albeit with a final recovery yield of 0.0031%. In parallel, nutshells were carbonized at 600 °C, 700 °C, and 800 °C, then chemically activated with ZnCl2. The carbon derived at 700°C exhibited superior physicochemical characteristics, including enhanced porosity and increased availability of functional groups, which enabled effective enzyme adsorption, improved catalytic performance, and enhanced reusability. Immobilized amylase on this support retained approximately 30% of its initial activity after five hydrolysis cycles, demonstrating moderate operational reusability and potential for repeated use in bioprocesses. In contrast, carbon materials from 600 °C and 800 °C showed lower stability and enzyme performance. These findings highlight the critical role of carbonization conditions in designing effective immobilization matrices and underscore the potential of macadamia nutshells as a renewable and sustainable resource for biocatalyst development. This "biowaste-to-biocatalyst" strategy exemplifies a circular bioeconomy model with implications for green chemistry, industrial biocatalysis, and environmental sustainability.
Keywords:
Macadamia Nutshell Waste; Activated Carbon; Amylase; Immobilization; ReusabilityReferences
[1] Ali, S.A., Sonego, M., Salavati, M., et al., 2024. Influence of structure and geometry on the compressive deformation behavior of Macadamia integrifolia and Bertholletia excelsa shells: A validated finite element simulation study. Advanced Engineering Materials. 26(4), 1–15. DOI: https://doi.org/10.1002/adem.202300723
[2] Cortat, L.O., Zanini, N.C., Barbosa, R.F.S., et al., 2021. A sustainable perspective for macadamia nutshell residues revalorization by green composites development. Journal of Polymers and the Environment. 29(10), 3210–3226. DOI: https://doi.org/10.1007/s10924-021-02080-y
[3] Khan, M.S., Islam, M.M., Epaarachchi, J., et al., 2023. Exploring the prospects of macadamia nutshells for bio-synthetic polymer composites: a review. Polymers. 15(19), 4007. DOI: https://doi.org/10.3390/polym15194007
[4] Pakade, V.E., Maremeni, L.C., Ntuli, T.D., et al., 2016. Application of quaternized activated carbon derived from macadamia nutshells for the removal of hexavalent chromium from aqueous solutions. South African Journal of Chemistry. 69, 88–97. DOI: https://doi.org/10.17159/0379-4350/2016/v69a22
[5] Wu, C., Zhang, G., Liu, J., et al., 2022. Influence of the interaction between activation conditions on the pore structure and CO₂ uptake of the prepared macadamia nutshell‐based activated carbon. International Journal of Energy Research. 46(12), 17204–17219. DOI: https://doi.org/10.1002/er.8385
[6] Dao, T.M., Luu, T.L., 2020. Synthesis of activated carbon from macadamia nutshells activated by H₂SO₄ and K₂CO₃ for methylene blue removal in water. Bioresource Technology Reports. 12, 100583. DOI: https://doi.org/10.1016/j.biteb.2020.100583
[7] Gong, Y., Li, S., Hu, Y., et al., 2025. Acidic and alkaline deep eutectic solvents pretreatment of macadamia nutshells for production of cellulose nanofibrils and lignin nanoparticles. International Journal of Biological Macromolecules. 300, 140251. DOI: https://doi.org/10.1016/j.ijbiomac.2025.140251
[8] Pezzana, L., Emanuele, A., Sesana, R., et al., 2023. Cationic UV-curing of isosorbide-based epoxy coating reinforced with macadamia nut shell powder. Progress in Organic Coatings. 185, 107949. DOI: https://doi.org/10.1016/j.porgcoat.2023.107949
[9] Zhou, J., He, Y., Huang, L., et al., 2024. Preparation of magnetic biochar from macadamia nutshell pretreated by FeCl₃-assisted mechanochemical activation for adsorption of heavy metals. Journal of Environmental Chemical Engineering. 12(4), 113122. DOI: https://doi.org/10.1016/j.jece.2024.113122
[10] Shi, R., Tao, L., Tu, X., et al., 2022. Metabolite profiling and transcriptome analyses provide insight into phenolic and flavonoid biosynthesis in the nutshell of Macadamia ternifolia. Frontiers in Genetics. 12, 809986. DOI: https://doi.org/10.3389/fgene.2021.809986
[11] Sjoholm, K.H., Cooney, M., Minteer, S.D., 2009. Effects of degree of deacetylation on enzyme immobilization in hydrophobically modified chitosan. Carbohydrate Polymers. 77(2), 420–424. DOI: https://doi.org/10.1016/j.carbpol.2009.02.006
[12] Bai, Y., Jing, Z., Ma, R., et al., 2023. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess and Biosystems Engineering. 46(11), 1539–1567. DOI: https://doi.org/10.1007/s00449-023-02914-0
[13] Silva, N.G.S., Cortat, L.I.C.O., Mulinari, D.R., 2021. Effect of alkaline treatment and coupling agent on thermal and mechanical properties of macadamia nutshell residues based PP composites. Journal of Polymers and the Environment. 29(10), 3271–3287. DOI: https://doi.org/10.1007/s10924-021-02112-7
[14] Maria de Medeiros Dantas, J., Sousa da Silva, N., Eduardo de Araújo Padilha, C., et al., 2020. Enhancing chitosan hydrolysis aiming chitooligosaccharides production by using immobilized chitosanolytic enzymes. Biocatalysis and Agricultural Biotechnology. 28, 101759. DOI: https://doi.org/10.1016/j.bcab.2020.101759
[15] Yandri, Y., Ropingi, H., Suhartati, T., et al., 2022. The effect of zeolite/chitosan hybrid matrix for thermal-stabilization enhancement on the immobilization of Aspergillus fumigatus α-amylase. Emerging Science Journal. 6(3), 505–518. DOI: https://doi.org/10.28991/ESJ-2022-06-03-06
[16] Kaushal, J., Seema, Singh, G., et al., 2018. Immobilization of catalase onto chitosan and chitosan–bentonite complex: a comparative study. Biotechnology Reports. 18, e00258. DOI: https://doi.org/10.1016/j.btre.2018.e00258
[17] Winarsa, R., Sukma, N.A., Afriyanti, D., et al., 2024. Coffee pulp activated carbon for immobilizing cellulase from Aspergillus niger ICP2: enhancing enzyme stability, activity, and its reusability. BIO Web of Conferences. 101, 01002. DOI: https://doi.org/10.1051/bioconf/202410101002
[18] Visvanathan, R., Qader, M., Jayathilake, C., et al., 2020. Critical review on conventional spectroscopic α-amylase activity detection methods: merits, demerits, and future prospects. Journal of the Science of Food and Agriculture. 100(7), 2836–2847. DOI: https://doi.org/10.1002/jsfa.10315
[19] Nolasco-Soria, H., 2021. Amylase quantification in aquaculture fish studies: a revision of most used procedures and presentation of a new practical protocol for its assessment. Aquaculture. 538, 736536. DOI: https://doi.org/10.1016/j.aquaculture.2021.736536
[20] Caturla, F., Molina-Sabio, M., Rodríguez-Reinoso, F., 1991. Preparation of activated carbon by chemical activation with ZnCl₂. Carbon. 29(7), 999–1007. DOI: https://doi.org/10.1016/0008-6223(91)90179-M
[21] Premalatha, A., Vijayalakshmi, K., Shanmugavel, M., et al., 2023. Optimization of culture conditions for enhanced production of extracellular α‐amylase using solid‐state and submerged fermentation from Aspergillus tamarii MTCC5152. Biotechnology and Applied Biochemistry. 70(2), 835–845. DOI: https://doi.org/10.1002/bab.2403
[22] Raul, D., Biswas, T., Mukhopadhyay, S., et al., 2014. Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochemistry Research International. 2014, 1–5. DOI: https://doi.org/10.1155/2014/568141
[23] Gois, I.M., Santos, A.M., Silva, C.F., 2020. Amylase from Bacillus sp. produced by solid state fermentation using cassava bagasse as starch source. Brazilian Archives of Biology and Technology. 63, e20170521. DOI: https://doi.org/10.1590/1678-4324-2020170521
[24] Kunamneni, A., Permaul, K., Singh, S., 2005. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. Journal of Bioscience and Bioengineering. 100(2), 168–171. DOI: https://doi.org/10.1263/jbb.100.168
[25] Sahnoun, M., Kriaa, M., Elgharbi, F., et al., 2015. Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: Optimization of culture conditions. International Journal of Biological Macromolecules. 75, 73–80. DOI: https://doi.org/10.1016/j.ijbiomac.2015.01.026
[26] Ghimire, A., Trably, E., Frunzo, L., et al., 2018. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresource Technology. 248, 180–186. DOI: https://doi.org/10.1016/j.biortech.2017.07.062
[27] Manuel, C.R., Carlos, Q.F., Carmen, P.C., et al., 2022. Fungal solid-state fermentation of food waste for biohydrogen production by dark fermentation. International Journal of Hydrogen Energy. 47(70), 30062–30073. DOI: https://doi.org/10.1016/j.ijhydene.2022.06.313
[28] Hashemi, M., Razavi, S.H., Shojaosadati, S.A., et al., 2010. Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. Journal of Bioscience and Bioengineering. 110(3), 333–337. DOI: https://doi.org/10.1016/j.jbiosc.2010.03.005
[29] Divya, A.S., Chee, C.Y.K., Jer, N.Y., et al., 2025. Optimisation of parameters for the extraction of β-amylase from sweet potato via liquid biphasic floatation. Cleaner Engineering and Technology. 24, 100841. DOI: https://doi.org/10.1016/j.clet.2024.100841
[30] Sun, J.L., Liang, X.H., Jia, Y.J., et al., 2011. Study on water-extracting technology of β-amylase from sweet potato. Advanced Materials Research. 396–398, 1563–1566. DOI: https://doi.org/10.4028/www.scientific.net/AMR.396-398.1563
[31] Yusree, F.I.F.M., Peter, A.P., Zulkifli, N.A. et al., 2022. Towards green recovery of β-amylase from slurry of sweet potato (Ipomoea batatas) of Vitato variety via liquid biphasic system. Sustainable Chemistry and Pharmacy. 25, 100579. DOI: https://doi.org/10.1016/j.scp.2021.100579
[32] Elida, F.S., Azizah, Wiyono, H.T., et al., 2020. Efficiency of cellulase production using coffee pulp waste under solid state fermentation by Aspergillus sp. VT12. Proceedings of The International Conference on Science and Applied Science (ICSAS2020); July 7, 2020; Surakarta, Indonesia. pp. 1–5. DOI: https://doi.org/10.1063/5.0030482
[33] Gasani, O.N., Azizah, A., Siswanto, S., et al., 2021. Pectinase production by using coffee pulp substrate as carbon and nitrogen source. Key Engineering Materials. 884, 165–170. DOI: https://doi.org/10.4028/www.scientific.net/KEM.884.165
[34] Sunarto, N.I., Azizah, A., Utarti, E., et al., 2021. Preliminary investigation of cellulase producer candidate isolate VT11 using coffee pulp waste under solid-state fermentation. Key Engineering Materials. 884, 234–240. DOI: https://doi.org/10.4028/www.scientific.net/KEM.884.234
[35] Rusdianti, R., Azizah, A., Utarti, E., et al., 2021. Cheap cellulase production by Aspergillus sp. VTM1 through solid state fermentation of coffee pulp waste. Key Engineering Materials. 884, 159–164. DOI: https://doi.org/10.4028/www.scientific.net/KEM.884.159
[36] Hidayah, A.A., Azizah, Winarsa, R., et al., 2020. Utilization of coffee pulp as a substrate for pectinase production by Aspergillus sp. VTMS through solid state fermentation. Proceedings of The International Conference on Science and Applied Science (ICSAS2020); July 7, 2020; Surakarta, Indonesia. pp. 1–5. DOI: https://doi.org/10.1063/5.0030474
[37] Santos, J.C.S. dos Barbosa, O., Ortiz, C., et al., 2015. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem. 7(16), 2413–2432. DOI: https://doi.org/10.1002/cctc.201500310
[38] Dhiman, S., Srivastava, B., Singh, G., et al., 2020. Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin: an easy and cost effective approach for the improvement of enzyme properties. International Journal of Biological Macromolecules. 156, 1347–1358. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.175
[39] Xu, H., Liang, H., 2022. Chitosan-regulated biomimetic hybrid nanoflower for efficiently immobilizing enzymes to enhance stability and by-product tolerance. International Journal of Biological Macromolecules. 220, 124–134. DOI: https://doi.org/10.1016/j.ijbiomac.2022.08.048
[40] Guisan, J.M., Fernandez-Lorente, G., Rocha-Martin, J., et al., 2022. Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Current Opinion in Green and Sustainable Chemistry. 35, 100593. DOI: https://doi.org/10.1016/j.cogsc.2022.100593
[41] Xu, K., Chen, X., Zheng, R., et al., 2020. Immobilization of multi-enzymes on support materials for efficient biocatalysis. Frontiers in Bioengineering and Biotechnology. 8, 660. DOI: https://doi.org/10.3389/fbioe.2020.00660
[42] Ashkan, Z., Hemmati, R., Homaei, A., et al., 2021. Immobilization of enzymes on nanoinorganic support materials: an update. International Journal of Biological Macromolecules. 168, 708–721. DOI: https://doi.org/10.1016/j.ijbiomac.2020.11.127
[43] Olivares, A.O., Baker, T.A., Sauer, R.T., 2016. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nature Reviews Microbiology. 14(1), 33–44. DOI: https://doi.org/10.1038/nrmicro.2015.4
[44] Wei, L., Zhang, W., Lu, H., et al., 2010. Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta. 80(3), 1298–1304. DOI: https://doi.org/10.1016/j.talanta.2009.09.029
[45] Wu, C., Cha, H.J., Valdes, J.J., et al., 2002. GFP‐visualized immobilized enzymes: degradation of paraoxon via organophosphorus hydrolase in a packed column. Biotechnology and Bioengineering. 77(2), 212–218. DOI: https://doi.org/10.1002/bit.10065
[46] Siar, E.H., Abellanas-Perez, P., Rocha-Martin, J., et al., 2024. Support enzyme loading influences the effect of aldehyde dextran modification on the specificity of immobilized ficin for large proteins. Molecules. 29(15), 3674. DOI: https://doi.org/10.3390/molecules29153674
[47] Wu, K., Sun, W., Li, D., et al., 2022. Inhibition of amyloid nucleation by steric hindrance. The Journal of Physical Chemistry B. 126(48), 10045–10054. DOI: https://doi.org/10.1021/acs.jpcb.2c06330
[48] Caparco, A.A., Dautel, D.R., Champion, J.A., 2022. Protein mediated enzyme immobilization. Small. 18(19). DOI: https://doi.org/10.1002/smll.202106425
[49] Morellon-Sterling, R., Siar, E.H., Braham, S.A., et al., 2021. Effect of amine length in the interference of the multipoint covalent immobilization of enzymes on glyoxyl agarose beads. Journal of Biotechnology. 329, 128–142. DOI: https://doi.org/10.1016/j.jbiotec.2021.02.005
[50] Mehdi, W.A., Mehde, A.A., Özacar, M., et al., 2018. Characterization and immobilization of protease and lipase on chitin-starch material as a novel matrix. International Journal of Biological Macromolecules. 117, 947–958. DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.195
[51] Bahri, S., Homaei, A., Mosaddegh, E., 2022. Zinc sulfide-chitosan hybrid nanoparticles as a robust surface for immobilization of Sillago sihama α-amylase. Colloids and Surfaces B: Biointerfaces. 218, 112754. DOI: https://doi.org/10.1016/j.colsurfb.2022.112754
[52] Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., et al., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances. 33(5), 435–456. DOI: https://doi.org/10.1016/j.biotechadv.2015.03.006
[53] El-Shora, H.M., El-Sayyad, G.S., El-Zawawy, N.A., et al., 2024. Stability of immobilized L-arginine deiminase from Penicillium chrysogenum and evaluation of its anticancer activity. Scientific Reports. 14(1), 27216. DOI: https://doi.org/10.1038/s41598-024-77795-8
[54] Gao, F., Courjean, O., Mano, N., 2009. An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification. Biosensors and Bioelectronics. 25(2), 356–361. DOI: https://doi.org/10.1016/j.bios.2009.07.015
[55] Rahman, N.H.A., Jaafar, N.R., Annuar, N.A.S., et al., 2021. Efficient substrate accessibility of cross-linked levanase aggregates using dialdehyde starch as a macromolecular cross-linker. Carbohydrate Polymers. 267, 118159. DOI: https://doi.org/10.1016/j.carbpol.2021.118159
[56] Santos, M.P.F., Porfírio, M.C.P., Junior, E.C.S., et al., 2022. Pepsin immobilization: influence of carbon support functionalization. International Journal of Biological Macromolecules. 203, 67–79. DOI: https://doi.org/10.1016/j.ijbiomac.2022.01.135
[57] Jang, E., Choi, S.W., Lee, K.B., 2019. Effect of carbonization temperature on the physical properties and CO2 adsorption behavior of petroleum coke-derived porous carbon. Fuel. 248, 85–92. DOI: https://doi.org/10.1016/j.fuel.2019.03.051
[58] Borges, J.F., Nascimento, P.A., Alves, A.N., et al., 2024. Laccase immobilization on activated carbon from hydrothermal carbonization of corn cob. Waste and Biomass Valorization. 15(1), 501–520. DOI: https://doi.org/10.1007/s12649-023-02160-1
[59] Brito, M.J.P., Bauer, L.C., Santos, M.P.F., et al., 2020. Lipase immobilization on activated and functionalized carbon for the aroma ester synthesis. Microporous and Mesoporous Materials. 309, 110576. DOI: https://doi.org/10.1016/j.micromeso.2020.110576
[60] Brito, M.J.P., Veloso, C.M., Bonomo, R.C.F., et al., 2017. Activated carbons preparation from yellow mombin fruit stones for lipase immobilization. Fuel Processing Technology. 156, 421–428. DOI: https://doi.org/10.1016/j.fuproc.2016.10.003
[61] Santos, M.P.F., Ferreira, M.A., Junior, E.C.S., et al., 2023. Functionalized activated carbon as support for trypsin immobilization and its application in casein hydrolysis. Bioprocess and Biosystems Engineering. 46(11), 1651–1664. DOI: https://doi.org/10.1007/s00449-023-02927-9
[62] Prieto, L.M., Ricordi, R.G., Kuhn, R.C., et al., 2014. Evaluation of β-galactosidase adsorption into pre-treated carbon. Biocatalysis and Agricultural Biotechnology. 3(3), 26–29. DOI: https://doi.org/10.1016/j.bcab.2013.12.008
[63] Yao, L.W., Khan, F.S.A., Mubarak, N.M., et al., 2022. Insight into immobilization efficiency of lipase enzyme as a biocatalyst on the graphene oxide for adsorption of azo dyes from industrial wastewater effluent. Journal of Molecular Liquids. 354, 118849. DOI: https://doi.org/10.1016/j.molliq.2022.118849
[64] Mo, H., Qiu, J., Yang, C., et al., 2020. Preparation and characterization of magnetic polyporous biochar for cellulase immobilization by physical adsorption. Cellulose. 27(9), 4963–4973. DOI: https://doi.org/10.1007/s10570-020-03125-6
[65] Ashkan, Z., Hemmati, R., Homaei, A., et al., 2021. Immobilization of enzymes on nanoinorganic support materials: an update. International Journal of Biological Macromolecules. 168, 708–721. DOI: https://doi.org/10.1016/j.ijbiomac.2020.11.127
[66] Abbasi, Z., Shamsaei, E., Leong, S.K., et al., 2016. Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous and Mesoporous Materials. 236, 28–37. DOI: https://doi.org/10.1016/j.micromeso.2016.08.022
[67] Quan, C., Wang, H., Jia, X., et al., 2021. Effect of carbonization temperature on CO2 adsorption behavior of activated coal char. Journal of the Energy Institute. 97, 92–99. DOI: https://doi.org/10.1016/j.joei.2021.04.003
[68] Karimi, H., Heidari, M.A., Emrooz, H.B.M., et al., 2020. Carbonization temperature effects on adsorption performance of metal-organic framework derived nanoporous carbon for removal of methylene blue from wastewater; experimental and spectrometry study. Diamond and Related Materials. 108, 107999. DOI: https://doi.org/10.1016/j.diamond.2020.107999
[69] Al-Najada, A.R., Almulaiky, Y.Q., Aldhahri, M., et al., 2019. Immobilisation of α-amylase on activated amidrazone acrylic fabric: a new approach for the enhancement of enzyme stability and reusability. Scientific Reports. 9(1), 12672. DOI: https://doi.org/10.1038/s41598-019-49206-w
[70] Defaei, M., Taheri-Kafrani, A., Miroliaei, M., et al., 2018. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. International Journal of Biological Macromolecules. 113, 354–360. DOI: https://doi.org/10.1016/j.ijbiomac.2018.02.147
[71] Verma, N.K., Raghav, N., 2021. Comparative study of covalent and hydrophobic interactions for α-amylase immobilization on cellulose derivatives. International Journal of Biological Macromolecules. 174, 134–143. DOI: https://doi.org/10.1016/j.ijbiomac.2021.01.033
[72] Al-Harbi, S.A., Almulaiky, Y.Q., 2020. Purification and biochemical characterization of Arabian balsam α-amylase and enhancing the retention and reusability via encapsulation onto calcium alginate/Fe2O3 nanocomposite beads. International Journal of Biological Macromolecules. 160, 944–952. DOI: https://doi.org/10.1016/j.ijbiomac.2020.05.176
[73] Mulko, L., Pereyra, J.Y., Rivarola, C.R., et al., 2019. Improving the retention and reusability of alpha-amylase by immobilization in nanoporous polyacrylamide-graphene oxide nanocomposites. International Journal of Biological Macromolecules. 122, 1253–1261. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.078
[74] Kumari, A., Kaila, P., Tiwari, P., et al., 2018. Multiple thermostable enzyme hydrolases on magnetic nanoparticles: an immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolytic glucanotransferase action. International Journal of Biological Macromolecules. 120, 1650–1658. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.106
[75] Atiroğlu, V., Atiroğlu, A., Özacar, M., 2021. Immobilization of α-amylase enzyme on a protein @metal–organic framework nanocomposite: a new strategy to develop the reusability and stability of the enzyme. Food Chemistry. 349, 129127. DOI: https://doi.org/10.1016/j.foodchem.2021.129127
[76] Primožič, M., Podrepšek, G.H., Pavlovič, I., et al., 2019. Enzyme immobilization onto biochar produced by the hydrothermal carbonization of biomass. Acta Chimica Slovenica. 66(3), 732–739. DOI: https://doi.org/10.17344/acsi.2019.5013
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Farah Salma Elida, Siswoyo, Purwatiningsih, Sutoyo, Bambang Trianto, Rudju Winarsa, Andre Krestianto, Kahar Muzakhar

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.