Literature Review on Stochastic Modeling of Wet and Dry Spells
DOI:
https://doi.org/10.30564/jees.v6i3.6964Abstract
With increasing concerns about climate change and its profound implications for water resources, stochastic modeling of wet and dry spells has emerged as a critical domain within hydrology and climatology, providing insight into the temporal patterns of precipitation and drought occurrences. This review of the literature synthesizes recent advances in the modeling of wet and dry spells using stochastic methods, focusing on publications from 2000 to 2024. The review examines various modeling approaches, including Markov chain models, mixed probability models, non-homogeneous models, and time series approaches. Key findings indicate that Markov chain models are effective in simulating the sequential occurrence of wet and dry spells, with higher-order variants addressing issues of overdispersion. Mixed probability models excel at representing heterogeneity and extremes in precipitation data, especially in regions with distinct wet and dry seasons. Non-homogeneous models are valuable for understanding the temporal dynamics and irregularities of dry spells, revealing significant shifts in their frequency and duration over time. These can be complemented by time-series methods to highlight long-term trends and seasonal variations. The review underscores the importance of regional specificity in modeling approaches to accurately capture local climatic and geographical variability. Recommendations for future research include the integration of hybrid models that combine the strengths of various approaches to improve predictive precision, focusing on the impacts of climate change, and conducting cross-regional comparisons to generalize findings and enhance the robustness of the models.
Keywords:
Stochastic Modeling; Wet Spells; Dry Spells; Markov Chain; Mixed Probability Models; Non-Homogeneous Models; Time Series; Climate Change; PrecipitationReferences
[1] Beniston, M., 2004. Climatic change and its impacts: an overview focusing on Switzerland. DOI: https://doi.org/10.1007/1-4020-2346-4
[2] Coulibaly, P., Dibike, Y.B., 2004. Downscaling of global climate model outputs for flood frequency analysis in the Saguenay river system, Final Project Report prepared for the Canadian Climate Change Action Fund, Environment Canada, Hamilton, Ontario, Canada.
[3] Pichard, G., Arnaud-Fassetta, G., Moron, V., et al., 2017. Hydro-climatology of the lower Rhône valley: historical flood reconstruction (ad 1300–2000) based on documentary and instrumental sources. Hydrological Sciences Journal. 62(11), 1772–1795. DOI: https://doi.org/10.1080/02626667.2017.1349314
[4] Chu, P.-S., Chen, H., 2005. Interannual and interdecadal rainfall variations in the Hawaiian islands. Journal of Climate. 18(22), 4796–4813. DOI: https://doi.org/10.1175/JCLI3578.1
[5] Philandras, C., Nastos, P., Kapsomenakis, J., et al., 2011. Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences. 11(12), 3235–3250. DOI: https://doi.org/10.5194/nhess-11-3235-2011
[6] Field, C.B., Barros, V.R., 2014. Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781107415386
[7] Barnes, C.S., 2018. Impact of climate change on pollen and respiratory disease. Current allergy and asthma reports. 18, 1–11. DOI: 10.1007/s11882-018-0813-7
[8] Gabriel, K.R., Neumann, J., 1962. A Markov chain model for daily rainfall occurrence at Tel Aviv. Quarterly Journal of the Royal Meteorological Society. 88(375), 90–95. DOI: https://doi.org/10.1002/qj.49708837511
[9] Katz, R.W., 1977. Precipitation as a chain-dependent process. Journal of Applied Meteorology (1962–1982). 671-676. DOI: https://doi.org/10.1175/1520-0450(1977)016<0671:PAACDP>2.0.CO;2
[10] Wilks, D.S., 2011. Statistical methods in the atmospheric sciences (3rd ed.). Academic Press.
[11] Setzer, J., Higham, C., 2023. Global trends in climate change litigation: 2023 snapshot. DOI: https://doi.org/10.21953/lse.9t1vm73ug29o
[12] Vaidyanathan, G., 2023. How India is battling deadly rain storms as climate change bites. DOI: https://doi.org/10.1038/d41586-023-00341-5
[13] Diffenbaugh, N.S., Swain, D.L., Touma, D., 2015. Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences. 112(13), 3931–3936. DOI: https://doi.org/10.1073/pnas.142238511
[14] Gabriel, J., Quemada, M., 2011. Replacing bare fallow with cover crops in a maize cropping system: yield, n uptake, and fertilizer fate. European Journal of agronomy. 34(3), 133–143. DOI: https://doi.org/10.1016/j.eja.2010.11.006
[15] Masih, I., Maskey, S., Mussa, F., et al., 2014. A review of droughts on the African continent: a geospatial and long-term perspective. Hydrology and earth system sciences. 18(9), 3635–3649. DOI: https://doi.org/10.5194/hess-18-3635-2014
[16] Wilks, D.S., 2011. Statistical methods in the atmospheric sciences. Academic Press. DOI: https://doi.org/10.1016/C2017-0-03921-6
[17] Yang, Y., Gan, T.Y., Tan, X., 2021. Recent changing characteristics of dry and wet spells in Canada. Climatic Change. 165(3), 42. DOI: https://doi.org/10.1007/s10584-021-03046-8
[18] Elshorbagy, A., Lindenas, K., Azinfar, H., 2018. Risk-based quantification of the impact of climate change on storm water infrastructure. Water Science. 32(1), 102–114. DOI: https://doi.org/10.1016/j.wsj.2017.12.003
[19] Progenio, M.F., Blanco, C.J.C., Santana, L.R., 2023. Stochastic modeling of the daily precipitation occurrence in the Tocantins-Araguaia hydrographic region, amazon, brazil. International Journal of Hydrology Science and Technology. 15(4), 390–420. DOI: https://doi.org/10.1504/IJHST.2023.131180
[20] Fdez-Arroyabe Hernaez, P., Martin-Vide, J., 2012. Regionalization of the probability of wet spells and rainfall persistence in the basque country (northern Spain). International Journal of Climatology. 32(12), 1909–1920. DOI: https://doi.org/10.1002/joc.2405
[21] Wan, H., Zhang, X., Barrow, E.M., 2005. Stochastic modeling of daily precipitation for Canada. Atmosphere-Ocean. 43(1), 23–32. DOI: https://doi.org/10.3137/ao.430102
[22] Gore, P., Chavan, A., 2013. Probabilities of wet spells over north eastern India leading to flood condition. MAUSAM. 64(3), 475–480.
[23] Tolika, K., Maheras, P., 2005. Spatial and temporal characteristics of wet spells in Greece. Theoretical and Applied Climatology. 81, 71–85. DOI: https://doi.org/10.1007/s00704-004-0089-9
[24] Lopez-Franca, N., Sanchez, E., Losada, T., et al., 2015. Markovian characteristics of dry spells over the Iberian peninsula under present and future conditions using escena ensemble of regional climate models. Climate Dynamics. 45, 661–677. DOI: https://doi.org/10.1007/s00382-014-2280-8
[25] Fischer, B., Mul, M., Savenije, H., 2013. Determining spatial variability of dry spells: a Markov-based method, applied to the makanya catchment, tanzania. Hydrology and Earth System Sciences. 17(6), 2161–2170. DOI: https://doi.org/10.5194/hess-17-2161-2013
[26] Sadiq, N., 2014. Stochastic modelling of the daily rainfall frequency and amount. Arabian Journal for Science and Engineering. 39, 5691–5702. DOI: https://doi.org/10.1007/s13369-014-1132-5
[27] Anagnostopoulou, C., Maheras, P., Karacostas, T., et al., 2003. Spatial and temporal analysis of dry spells in Greece. Theoretical and Applied Climatology. 74, 77–91. doi:10.1007/s00704-002-0713-5.
[28] Martin-Vide, J., Gomez, L., 1999. Regionalization of peninsular Spain based on the length of dry spells. International Journal of Climatology: A Journal of the Royal Meteorological Society. 19(5), 537–555. DOI: https://doi.org/10.1002/(SICI)1097-0088(199904)19:5<537::AID-JOC371>3.0.CO;2-X
[29] Mengistu, M., Olivier, C., Botai, J.O., et al., 2021. Spatial and temporal analysis of the mid-summer dry spells for the summer rainfall region of South Africa. Water SA. 47(1), 76–87. http://dx.doi.org/10.17159/wsa/2021.v47.i1.9447
[30] Mandal, K., Padhi, J., Kumar, A., et al., 2015. Analyses of rainfall using probability distribution and Markov chain models for crop planning in daspalla region in Odisha, India. Theoretical and Applied Climatology. 121, 517–528. DOI: https://doi.org/10.1007/s00704-014-1259-z
[31] Ochola, W., Kerkides, P., 2003. A markov chain simulation model for predicting critical wet and dry spells in kenya: analyzing rainfall events in the Kano plains. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage. 52(4), 327–342. DOI: https://doi.org/10.1002/ird.94
[32] El Hafyani, M., El Himdi, K., 2022. A comparative study of geometric and exponential Laws in modelling the distribution of daily precipitation durations. In IOP Conference Series: Earth and Environmental Science (Vol. 1006, No. 1, p. 012005). IOP Publishing.
[33] Back, A.J., Miguel, L.P., 2017. Analysis of the stochastic model of the Markov chain on daily rainfall occurrence in the state of Santa Catarina, brazil. Management of Environmental Quality: An International Journal. 28(1), 2–16. DOI: https://doi.org/10.1108/MEQ-07-2015-0135
[34] Admasu, W., Tadesse, K., Yemenu, F., et al., 2014. Markov chain analysis of dry, wet weeks and statistical analysis of weekly rainfall for agricultural planning at Dhera, central rift valley region of Ethiopia. African Journal of Agricultural Research. 9(29), 2205–2213. DOI: https://doi.org/10.5897/AJAR2014.8664
[35] Magang, D., Ojara, M., Lou, Y., 2024. Dry spells and probability of rainfall occurrence over Tanzania, east Africa. Agrotechnology. 13, 360. DOI: https://doi.org/10.35248/2168-9881.24.13.360
[36] Basse, J., Camara, M., Diba, I., et al., 2024. Projected changes in dry and wet spells over west Africa using Markov chain approach. DOI:10.20944/preprints202405.1295.v1
[37] Andersen, C.B., Wright, D.B., Thorndahl, S., 2024. Con-sst-rain: Continuous stochastic space-time rainfall generation based on Markov chains and transposition of weather radar data. Journal of Hydrology. 637, 131385. DOI: https://doi.org/10.1016/j.jhydrol.2024.131385
[38] Ray, M., Biswasi, S., Sahoo, K., et al., 2018. A Markov chain approach for wet and dry spell and probability analysis. International Journal of Current Microbiology and Applied Sciences. 6, 1005–1013.
[39] Choudhury, I., Bhattachrya, B., 2023. Assessing the long-term fluctuations in dry-wet spells over Indian region using Markov model in gee cloud platform. Journal of Agrometeorology. 25(2), 247–254. DOI: https://doi.org/10.54386/jam.v25i2.2184
[40] Gao, C., Guan, X., Booij, M.J., et al., 2021. A new framework for a multi-site stochastic daily rainfall model: Coupling a univariate Markov chain model with a multi-site rainfall event model. Journal of Hydrology. 598, 126478. DOI: https://doi.org/10.1016/j.jhydrol.2021.126478
[41] Gao, C., Booij, M.J., Xu, Y.-P., 2020. Development and hydrometeorological evaluation of a new stochastic daily rainfall model: Coupling Markov chain with rainfall event model. Journal of Hydrology. 589, 125337. DOI: https://doi.org/10.1016/j.jhydrol.2020.125337
[42] Nagarajan, K., 2022. Weekly rainfall analysis using the Markov chain model in the dharmapuri region of Tamil nadu. Journal of Applied and Natural Science. 14(SI), 213–219. DOI: https://doi.org/10.31018/jans.v14iSI.3611
[43] Schoof, J., Pryor, S., 2008. On the proper order of Markov chain model for daily precipitation occurrence in the contiguous united states. Journal of Applied Meteorology and Climatology. 47(9), 2477–2486. DOI: https://doi.org/10.1175/2008JAMC1840.1
[44] Wilson Kemsley, S., Osborn, T., Dorling, S., et al., 2021. Selecting Markov chain orders for generating daily precipitation series across different Köppen climate regimes. International Journal of Climatology, 41(14), 6223-6237. DOI: https://doi.org/10.1002/joc.7175
[45] Chowdhury, A.K., Kar, K.K., Shahid, S., et al., 2019. Evaluation of spatio-temporal rainfall variability and performance of a stochastic rainfall model in Bangladesh. International Journal of Climatology. 39(11), 4256–4273. DOI: https://doi.org/10.1002/joc.6071
[46] Basse, J., Camara, M., Diba, I., et al., 2024. Projected Changes in Dry and Wet Spells over West Africa Using Markov chain Approach. Preprints. 2024051295. DOI: https://doi.org/10.20944/preprints202405.1295.v1
[47] Perez-Sanchez, J., Senent-Aparicio, J., 2018. Analysis of meteorological droughts and dry spells in semiarid regions: a comparative analysis of probability distribution functions in the Segura basin (se Spain). Theoretical and applied climatology. 133(3), 1061–1074. DOI: https://doi.org/10.1007/s00704-017-2239-x
[48] Sánchez, E., Domínguez, M., Romera, R., et al., 2011. Regional modeling of dry spells over the iberian peninsula for present climate and climate change conditions: A letter. Climatic change. 107, 625–634. DOI: https://doi.org/10.1007/s10584-011-0114-9
[49] Muita, R.R., 2013. Probabilistic forecasting of dry spells in kenya and australia, Doctoral dissertation, University of Sydney.
[50] Deni, S.M., Suhaila, J., Jemian, A.A., 2008. Probability models for wet spells in peninsular Malaysia during the periods of 1940s-1976 & 1977-2004. Journal of Quality Measurement and Analysis JQMA. 4(1), 167–178.
[51] Korolev, V.Y., Gorshenin, A.K., Gulev, S.K., et al., 2017. Statistical analysis of precipitation events. arXiv preprint arXiv:1705.11055. DOI: https://doi.org/10.48550/arXiv.1705.11055
[52] Ghosh, S., Das, L.C., Ahmed, R., et al., 2024. Exploring optimal probability distribution for consecutive wet spells in Chittagong Division, Bangladesh. American Journal of Mathematics and Statistics, 14(1), 9-15. DOI: https://doi.org/10.5923/j.ajms.20241401.02
[53] Dobi-Wantuch, I., Mika, J., Szeidl, L., 2000. Modelling wet and dry spells with mixture distributions. Meteorology and atmospheric physics. 73(3-4), 245–256. DOI: https://doi.org/10.1007/s007030050076
[54] Deni, S.M., Jemain, A.A., Ibrahim, K., 2008. The spatial distribution of wet and dry spells over peninsular Malaysia. Theoretical and applied climatology. 94, 163–173. DOI: https://doi.org/10.1007/s00704-007-0355-8
[55] Deni, S.M., Jemain, A.A., Ibrahim, K., 2009. Mixed probability models for dry and wet spells. Statistical Methodology. 6(3), 290–303. DOI: https://doi.org/10.1016/j.stamet.2008.11.001
[56] Deni, S.M., Jemain, A.A., Ibrahim, K., 2010. The best probability models for dry and wet spells in peninsular Malaysia during monsoon seasons. International Journal of Climatology. 30(8), 1194–1205. DOI: https://doi.org/10.1002/joc.1972
[57] Deni, S.M., Jemain, A.A., 2012. Comparison between mixed probability models and Markov chain models for weekly dry and wet spells in peninsular Malaysia, in Proceedings of the World Congress on Engineering, Vol. 1.
[58] Roshani, M., Saligheh, M., Alijani, B., et al., 2020. Best probability model and generalized linear mixed model of wet and dry spells of the southern coast of the Caspian sea. Geographic Space. 20(69), 17–37.
[59] Baiamonte, G., Agnese, C., Cammalleri, C., et al., 2024. Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe. Advances in Statistical Climatology, Meteorology and Oceanography. 10(1), 51–67. DOI: https://doi.org/10.48550/arXiv.2402.02016
[60] Sirangelo, B., Caloiero, T., Coscarelli, R., et al., 2017. Stochastic analysis of long dry spells in Calabria (southern Italy). Theoretical and Applied Climatology. 127, 711–724.
[61] Sirangelo, B., Caloiero, T., Coscarelli, R., et al., 2015. A stochastic model for the analysis of the temporal change of dry spells. Stochastic environmental research and risk assessment. 29, 143–155. DOI: https://doi.org/10.1007/s00704-015-1662-0
[62] Sirangelo, B., Caloiero, T., Coscarelli, R., et al., 2019. A stochastic approach for the analysis of long dry spells with different threshold values in southern Italy. Water. 11(10), 2026. DOI: https://doi.org/10.1007/s00477-014-0904-5
[63] Cindric, K., Pasaric, Z., Gajic-Capka, M., 2010. Spatial and temporal analysis of dry spells in Croatia. Theoretical and applied climatology. 102, 171–184. DOI: https://doi.org/10.1007/s00704-010-0250-6
[64] Muhammad, N.S., Julien, P.Y., 2015. Multiday rainfall simulations for Malaysian monsoons, in ISFRAM 2014: Proceedings of the International Symposium on Flood Research and Management, Springer, pp. 111–120. DOI: https://doi.org/10.1007/978-981-287-365-1_10
[65] Muhammad, N.S., Julien, P.Y., Salas, J.D., 2016. Probability structure and return period of multiday monsoon rainfall. Journal of Hydrologic Engineering. 21(1), 04015048. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001253
[66] Wiuff, R., 2020. Analysis and modeling of precipitation intermittency by compound Markov-darma models. Water Resources Research. 56(2), e2019WR025522. DOI: https://doi.org/10.1029/2019WR025522
[67] Perchtold, C., Buckwar, E., 2024. Climate change in Austria: Precipitation and dry spells over 50 years. DOI: https://doi.org/10.48550/arXiv.2408.11497
[68] Habibi, B., Meddi, M., Torfs, P.J., et al., 2018. Characterization and prediction of meteorological drought using stochastic models in the semi-arid Cheliff–Zahrez basin (Algeria). Journal of Hydrology: Regional Studies. 16, 15–31. DOI: https://doi.org/10.1016/j.ejrh.2018.02.005
[69] Motamedi, A., Gohari, A., Haghighi, A.T., 2023. Three-decade assessment of dry and wet spells change across Iran, a fingerprint of climate change. Sci Rep 13, 2888. DOI: https://doi.org/10.1038/s41598-023-30040-0
[70] Vaittinada Ayar, P., Mailhot, A., 2021. Evolution of Dry and Wet Spells Under Climate Change Over North‐Eastern North America. Journal of Geophysical Research: Atmospheres, 126(5), e2020JD033740. DOI: https://doi.org/10.1029/2020JD033740
[71] Nabeel, A., Athar, H., 2020. Stochastic projection of precipitation and wet and dry spells over Pakistan using IPCC AR5 based AOGCMs. Atmospheric Research, 234, 104742. DOI: https://doi.org/10.1016/j.atmosres.2019.104742
[72] Rezvani, R., Na, W., Najafi, M.R., 2023. Lagged compound dry and wet spells in Northwest North America under 1.5° C–4° C global warming levels. Atmospheric Research, 290, 106799. DOI: https://doi.org/10.1016/j.atmosres.2023.106799
[73] Huang, L., Du, H., Dang, Y., et al., 2023. Observed and projected changes in wet and dry spells for the major river basins in East Asia. International Journal of Climatology, 43(12), 5369-5386. DOI: https://doi.org/10.1002/joc.8151
[74] Na, W., Najafi, M.R., 2024. Rising risks of hydroclimatic swings: A large ensemble study of dry and wet spell transitions in North America. Global and Planetary Change, 238, 104476. DOI: https://doi.org/10.1016/j.gloplacha.2024.104476
[75] Raymond, F., Ullmann, A., Tramblay, Y., et al., 2019. Evolution of Mediterranean extreme dry spells during the wet season under climate change. Regional Environmental Change, 19, 2339-2351. DOI: https://doi.org/10.1007/s10113-019-01526-3
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2024 Mounia El Hafyani, Khalid El Himdi
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.