
Increasing Area of Banlaem Mangrove Forest at Nakhon Si Thammarat in Southern Thailand: Land Cover Changes and Predictive Models
DOI:
https://doi.org/10.30564/jees.v7i5.8264Abstract
Land cover changes significantly affect mangrove forests, driven by both anthropogenic activities and natural processes. The Banlaem mangrove in Nakhon Si Thammarat, Thailand, supports numerous mangrove plantation projects but lacks comprehensive assessments and monitoring related to land cover changes. This study aimed to (1) investigate land cover changes in the Banlaem mangrove from 1995 to 2023, and (2) generate a predictive model for future land cover changes. For land cover assessment, satellite imagery from multiple sources, including Sentinel-2 (Level 2A) and Landsat (Collection 2 Level 2), was utilized to examine and classify changes in mangrove cover within the Banlaem mangrove forest from 1995 to 2023, using supervised classification with the maximum likelihood algorithm. Various regression models were analysed to develop a predictive model based on area size and time. The mangrove area in the Banlaem mangrove forest steadily grew throughout the study period, with the total area increasing from 56.16 ha in 1995 to 527.55 ha in 2023. This study represents the first analysis of changes in the Banlaem mangrove cover. Throughout the tested models, they reveal an unclear pattern of mangrove expansion, yet they indicate a high rate of expansion in the Banlaem mangrove forest. In addition, these results are expected to encourage greater community involvement in the monitoring and management of the Banlaem mangrove. We recommend establishing a community monitoring network to engage local residents in tracking changes in mangrove cover, supported by training and resources.
Keywords:
Land Cover; Landsat; Mangrove; Sentinel; ThailandReferences
[1] Getzner, M., Islam, M.S., 2020. Ecosystem services of mangrove forests: Results of a meta-analysis of economic values. International Journal of Environmental Research and Public Health. 17(16), 5830. DOI: https://doi.org/10.3390/ijerph17165830
[2] Akram, H., Hussain, S., Mazumdar, P., et al., 2023. Mangrove health: A review of functions, threats, and challenges associated with mangrove management practices. Forests. 14(9), 1698. DOI: https://doi.org/10.3390/f14091698
[3] Tanner, M.K., Moity, N., Costa, M.T., et al., 2019. Mangroves in the Galapagos: Ecosystem services and their valuation. Ecological Economics. 160, 12–24. DOI: https://doi.org/10.1016/j.ecolecon.2019.01.024
[4] Donato, D.C., Kauffman, J.B., Murdiyarso, D., et al., 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience. 4(5), 293–297. DOI: https://doi.org/10.1038/ngeo1123
[5] Giri, C., 2021. Recent advancement in mangrove forests mapping and monitoring of the world using earth observation satellite data. Remote Sensing. 13(4), 563. DOI: https://doi.org/10.3390/rs13040563
[6] Pinkeaw, S., Boonrat, P., Koedsin, W., et al., 2024. Semi-automated mangrove mapping at National-Scale using Sentinel-2, Sentinel-1, and SRTM data with Google Earth Engine: A case study in Thailand. The Egyptian Journal of Remote Sensing and Space Sciences. 27(3), 555–564. DOI: https://doi.org/10.1016/j.ejrs.2024.07.001
[7] Kanjin, K., Alam, B.M., 2024. Assessing changes in land cover, NDVI, and LST in the Sundarbans mangrove forest in Bangladesh and India: A GIS and remote sensing approach. Remote Sensing Applications: Society and Environment. 36, 101289. DOI: https://doi.org/10.1016/j.rsase.2024.101289
[8] Seydi, S.T., Ahmadi, S.A., Ghorbanian, A., et al., 2024. Land cover mapping in a mangrove ecosystem using Hybrid Selective Kernel-Based Convolutional Neural Networks and multi-temporal Sentinel-2 imagery. Remote Sensing. 16(15), 2849. DOI: https://doi.org/10.3390/rs16152849
[9] Raza, S.A., Zhang, L., Zuo, J., et al., 2024. Time series monitoring and analysis of Pakistan’s mangrove using Sentinel-2 data. Frontiers in Environmental Science. 12, 1416450. DOI: https://doi.org/10.3389/fenvs.2024.1416450
[10] Banerjee, S., Bhadra, T., Saha, A., et al., 2024. Genus level classification of the mangroves in Indian sundarbans using Sentinel-2 multispectral imagery. Earth and Environmental Science. 1382(1), 012011. DOI: https://doi.org/10.1088/1755-1315/1382/1/012011
[11] Ginting, D.N.B., Setiawan, K.T., Anggraini, N., et al., 2024. Comparison between top and bottom of atmosphere Sentinel-2 image for mangrove mapping in Balikpapan Bay, East Kalimantan. BIO Web of Conferences. 89, 07003. DOI: https://doi.org/10.1051/bioconf/20248907003
[12] Ahmad, A.M., Minallah, N., Ahmed, N., et al., 2020. Remote Sensing Based Vegetation Classification Using Machine Learning Algorithms. Proceedings of The 2019 International Conference on Advances in the Emerging Computing Technologies (AECT); Feb 10, 2020; Al Madinah Al Munawwarah, Saudi Arabia. pp. 1–6. DOI: https://doi.org/10.1109/AECT47998.2020.9194217
[13] Akbar Hossain, K., Masiero, M., Pirotti, F., 2024. Land cover change across 45 years in the world’s largest mangrove forest (Sundarbans): The contribution of remote sensing in forest monitoring. European Journal of Remote Sensing. 57(1), 2097450. DOI: https://doi.org/10.1080/22797254.2022.2097450
[14] Solikhah, F., Ariawan, I., 2024. Pemetaan distribusi luasan mangrove menggunakan metode maximum likelihood. Jurnal Penelitian Pendidikan Geografi. 9(1), 24–33. DOI: https://doi.org/10.36709/jppg.v9i1.131
[15] Koesdaryanto, N.S., Wijayanti, M., Simanjuntak, M.P.D., et al., 2024. Mangrove cover change between 2003 and 2023 on the east coast of South Sumatera Province, Indonesia. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia. 10(1), 54–60. DOI: https://doi.org/10.13057/psnmbi/m100107
[16] Li, C., Wang, J., Wang, L., et al., 2014. Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sensing. 6(2), 964–983. DOI: https://doi.org/10.3390/rs6020964
[17] Maturo, F., Verde, R., 2024. Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers. Computational Statistics. 39(1), 239–270. DOI: https://doi.org/10.1007/s00180-022-01259-8
[18] Minmun, T., 2024. Personal interview with the author [Personal communication].
[19] Tourism Authority of Thailand (TAT), n.d.. Banlaem Homestay Mangrove Forest Conservation Tourism Community. (in Thai). Available from: https://shorturl.asia/TBRI3 (cited 28 March 2025).
[20] Wanthongchai, P., Pongruktham, O., 2019. Mangrove cover, biodiversity, and carbon storage of mangrove forests in Thailand. In: Gul, B., Böer, B., Khan, M.A., et al. (eds.). Sabkha Ecosystems: Volume VI: Asia/Pacific. Springer International Publishing: Cham, Germany. pp. 459–467. DOI: https://doi.org/10.1007/978-3-030-04417-6_28
[21] Sudtongkong, C., Webb, E.L., 2008. Outcomes of state- vs. Community-based mangrove management in Southern Thailand. Ecology and Society. 13(2), 27. DOI: https://doi.org/10.5751/ES-02531-130227
[22] Climate Center, Meteorological Department, 2023. Climate of Nakhon Si Thammarat Province. Available from: https://www.tmd.go.th/climate/summaryyearly (cited 18 February 2025).
[23] European Space Agency, 2025. Copernicus Browser. Available from: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch (cited 18 February 2025).
[24] United States Geological Survey, 2025. Earth Explorer. Available from: https://earthexplorer.usgs.gov/ (cited 18 February 2025).
[25] Long, J.B., Giri, C., 2011. Mapping the Philippines’ mangrove forests using landsat imagery. Sensors. 11(3), 2972–2981. DOI: https://doi.org/10.3390/s110302972
[26] Nguyen, H.-H., McAlpine, C., Pullar, D., et al., 2013. The relationship of spatial–temporal changes in fringe mangrove extent and adjacent land-use: Case study of Kien Giang coast, Vietnam. Ocean & Coastal Management. 76, 12–22. DOI: https://doi.org/10.1016/j.ocecoaman.2013.01.003
[27] Congedo, L., 2021. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software. 6(64), 3172. DOI: https://doi.org/10.21105/joss.03172
[28] Congalton, R.G., Green, K., 1999. Assessing the Accuracy of Remotely Sensed Data: Principles And Practices. CRC Press: Boca Raton, FL, USA.
[29] Stehman, S.V., 1997. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment. 62(1), 77–89. DOI: https://doi.org/10.1016/S0034-4257(97)00083-7
[30] Barsi, Á., Kugler, Zs., László, I., et al., 2018. Accuracy dimensions in remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII–3, 61–67. DOI: https://doi.org/10.5194/isprs-archives-XLII-3-61-2018
[31] Lu, D., Mausel, P., Brondízio, E., et al., 2004. Change detection techniques. International Journal of Remote Sensing. 25(12), 2365–2401. DOI: https://doi.org/10.1080/0143116031000139863
[32] Harris, C.R., Millman, K.J., Van Der Walt, S.J., et al., 2020. Array programming with NumPy. Nature. 585(7825), 357–362. DOI: https://doi.org/10.1038/s41586-020-2649-2
[33] Virtanen, P., Gommers, R., Oliphant, T.E., et al., 2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods. 17(3), 261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2
[34] McKinney, W., 2010. Data Structures for Statistical Computing in Python. Proceedings of The 9th Python in Science Conference (SCIPY 2010); June 28–July 3, 2010; Austin, TX, USA. pp. 56–61. DOI: https://doi.org/10.25080/Majora-92bf1922-00a
[35] Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering. 9(3), 90–95. DOI: https://doi.org/10.1109/MCSE.2007.55
[36] Upton, G., Cook, I., 1996. Understanding Statistics. OUP: Oxford, UK.
[37] Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research.12(85), 2825–2830.
[38] McHugh, M.L., 2012. Interrater reliability: The kappa statistic. Biochemia Medica. 276–282. DOI: https://doi.org/10.11613/BM.2012.031
[39] Bunting, P., Rosenqvist, A., Hilarides, L., et al., 2022. Global mangrove extent change 1996–2020: Global mangrove watch version 3.0. Remote sensing. 14(15), 3657. DOI: https://doi.org/10.3390/rs14153657
[40] The Ministry of Natural Resources and Environment, 2021. 20-year Master Plan of the Ministry of Natural Resources and Environment (2018–2037). Available from: http://164.115.46.29/media/details?media_group_code=10&media_type_id=1&media_id=4785 (cited 18 February 2025).
[41] Barhoumi, Z., Atia, A., Hussain, A.A., et al., 2022. Effects of high salinity on photosynthesis characteristics, leaf histological components and chloroplasts ultrastructure of Avicennia marina seedlings. Acta Physiologiae Plantarum. 44(8), 85. DOI: https://doi.org/10.1007/s11738-022-03418-2
[42] Nguyen, H.T., Stanton, D.E., Schmitz, N., et al., 2015. Growth responses of the mangrove Avicennia marina to salinity: Development and function of shoot hydraulic systems require saline conditions. Annals of Botany. 115(3), 397–407. DOI: https://doi.org/10.1093/aob/mcu257
[43] Guo, Z., Wei, M.-Y., Zhong, Y.-H., et al., 2023. Leaf sodium homeostasis controlled by salt gland is associated with salt tolerance in mangrove plant Avicennia marina. Tree Physiology. 43(5), 817–831. DOI: https://doi.org/10.1093/treephys/tpad002
[44] Stocken, T.V.der, Vanschoenwinkel, B., Ryck, D.J.R.D., et al., 2015. Interaction between Water and wind as a driver of passive dispersal in mangroves. PLOS ONE. 10(3), e0121593. DOI: https://doi.org/10.1371/journal.pone.0121593
[45] Ngernsaengsaruay, C., Chanton, P., Leksungnoen, N., et al., 2024. A taxonomic revision of Rhizophora L. (Rhizophoraceae) in Thailand. PeerJ. 12, e17460. DOI: https://doi.org/10.7717/peerj.17460
[46] Uddin, M.M., Abdul Aziz, A., Lovelock, C.E., 2023. Importance of mangrove plantations for climate change mitigation in Bangladesh. Global Change Biology. 29(12), 3331–3346. DOI: https://doi.org/10.1111/gcb.16674
[47] Damastuti, E., de Groot, R., Debrot, A.O., et al., 2022. Effectiveness of community-based mangrove management for biodiversity conservation: A case study from Central Java, Indonesia. Trees, Forests and People. 7, 100202. DOI: https://doi.org/10.1016/j.tfp.2022.100202
[48] European Space Agency, 2024. About the Launch. Available from: https://www.esa.int/ Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch (cited 8 November 2024).
[49] Ming, S., Wang, S.-X., Zhou, Y., et al., 2018. Effects of training samples and classifiers on classification of Landsat-8 imagery. Journal of the Indian Society of Remote Sensing. 46(9), 1333–1340. Doi: https://doi.org/10.1007/s12524-018-0777-z
[50] Sarjana, K., Hayati, L., Wahidaturrahmi, W., 2020. Mathematical modelling and verbal abilities: How they determine students’ ability to solve mathematical word problems? Beta: Jurnal Tadris Matematika. 13(2), 117–129. DOI: https://doi.org/10.20414/betajtm.v13i2.390
[51] Alongi, D.M., 2015. The impact of climate change on mangrove forests. Current Climate Change Reports. 1(1), 30–39. DOI: https://doi.org/10.1007/s40641-015-0002-x
[52] Alongi, D.M., 2018. Impact of global change on nutrient dynamics in mangrove forests. Forests. 9(10), 596. DOI: https://doi.org/10.3390/f9100596
[53] Choudhary, B., Dhar, V., Pawase, A.S., 2024. Blue carbon and the role of mangroves in carbon sequestration: Its mechanisms, estimation, human impacts and conservation strategies for economic incentives. Journal of Sea Research. 199(9), 102504. DOI: https://doi.org/10.1016/j.seares.2024.102504
[54] Zhu, J.-J., Yan, B., 2022. Blue carbon sink function and carbon neutrality potential of mangroves. Science of The Total Environment. 822, 153438. DOI: https://doi.org/10.1016/j.scitotenv.2022.153438
[55] Richards, D.R., Thompson, B.S., Wijedasa, L., 2020. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nature Communications. 11(1), 4260. DOI: https://doi.org/10.1038/s41467-020-18118-z
[56] Wei, J., Jiang, T., Ménager, P., et al., 2025. COP29: Progresses and challenges to global efforts on the climate crisis. The Innovation. 6(1), 100748. DOI: https://doi.org/10.1016/j.xinn.2024.100748
[57] Thailand Greenhouse Gas Management Organization (Public Organization), 2025. Calculation for Carbon Sequestration in Tree. Available from: https://ghgreduction.tgo.or.th/th/tver-method/tver-tool/for-agr/item/3451-calculation-for-carbon-sequestration.html (cited 27 March 2025).
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Sinlapachat Pungpa , Sirilak Chumkiew

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.