
Detecting Plastic Pollution in Aquatic Environment Using Remote Sensing Technology: Cost-Saving Method in Pollution and Risk Management for Developing Countries
DOI:
https://doi.org/10.30564/jees.v7i6.9315Abstract
One of the crucial elements that is directly tied to the quality of living organisms is the quality of the water. However, water quality has been adversely affected by plastic pollution, a global environmental disaster that has an effect on aquatic life, wildlife, and human health. To prevent these effects, better monitoring, detection, characterisation, quantification, and tracking of aquatic plastic pollution at regional and global scales is urgently needed. Remote sensing technology is regarded as a useful technique, as it offers a promising new and less labour-intensive tool for the detection, quantification, and characterisation of aquatic plastic pollution. The study seeks to supplement to the body of scientific literature by compiling original data on the monitoring of plastic pollution in aquatic environments using remote sensing technology, which can function as a cost saving method for water pollution and risk management in developing nations. This article provides a profound analysis of plastic pollution, including its categories, sources, distribution, chemical properties, and potential risks. It also provides an in-depth review of remote sensing technologies, satellite-derived indices, and research trends related to their applicability. Additionally, the study clarifies the difficulties in using remote sensing technologies for aquatic plastic monitoring and practical ways to reduce aquatic plastic pollution. The study will improve the understanding of aquatic plastic pollution, health hazards, and the suitability of remote sensing technology for aquatic plastic contamination monitoring studies among researchers and interested parties.
Keywords:
Remote Sensing; Plastic Pollution; Water Sources; Micro-and Macro-Plastics; Aquatic Environment; Risk ManagementReferences
[1] Mugudamani, I., Oke, S.A., Gumede, T.P., et al., 2023. Herbicides in Water Sources: Communicating Potential Risks to the Population of Mangaung Metropolitan Municipality, South Africa. Toxics. 11(6), 538–538. DOI: https://doi.org/10.3390/toxics11060538
[2] Lin, L., Yang, H., Xu, X., 2022. Effects of water pollution on human health and disease heterogeneity: a review. Frontiers in Environmental Sciences. 10, 880246. DOI: https://doi.org/10.3389/fenvs.2022.880246
[3] Oke, S.A., 2024. Contaminant of Emerging Concerns in Modder River Catchment of Free State: Implication for Environmental Risk and Water Sources Protection. Water. 16(17), 2494. DOI: https://doi.org/10.3390/w16172494
[4] Bhardwaj, L.K., Rath, P., Yadav, P., et al., 2024. Microplastic contamination, an emerging threat to the freshwater environment: a systematic review. Environmental Systems Research. 13(1), 8. DOI: https://doi.org/10.1186/s40068-024-00338-7
[5] Oke, S.A., Mugudamani, I., Kemp, G., 2024. Qualitative screening of emerging contaminants in urban and natural waters of Mangaung District of the Free State province of South Africa. Discover Environment. 2(1), 144. DOI: https://doi.org/10.1007/s44274-024-00178-3
[6] Almroth, B.C., Eggert, H., 2019. Marine Plastic Pollution: Sources, Impacts, and Policy Issues. Review of Environmental Economics and Policy. 13(2), 317–326. DOI: https://doi.org/10.1093/reep/rez012
[7] Statista, 2021. Production of Plastics Worldwide from 1950 to 2019 (in Million Metric Tons). Available from: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (cited 24 March 2025).
[8] Alhazmi, H., Almansour, F.H., Aldhafeeri, Z., 2021. Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability. 13(10), 5340. DOI: https://doi.org/10.3390/su13105340
[9] Iskakova, D., Ganiyu, S.A., Rong, X., et al., 2020. Influencing Factors of Plastic Waste Pollution Reduction in Kinshasa. Journal of Geoscience and Environment Protection. 8(12), 180–199. DOI: https://doi.org/10.4236/gep.2020.812011
[10] Râpa, M., Darie-Niţă, R.N., Matei, E., et al., 2023. Insights into Anthropogenic Micro and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers. 15(11), 2425. DOI: https://doi.org/10.3390/polym15112425
[11] Jambeck, J., Geyer, R., Wilcox, C., et al., 2015. Plastic waste inputs from land into the ocean. Science. 347(6223), 768–771. DOI: https://doi.org/10.1126/science.1260352
[12] Popa, C.L., Dontu, S.I., Savastru, D., et al., 2022. Role of Citizen Scientists in Environmental Plastic Litter Research-A Systematic Review. Sustainability. 14(20), 13265. DOI: https://doi.org/10.3390/su142013265
[13] Enyoh, C.E., Wang, Q., Eze, V.C., et al., 2022. Assessment of potentially toxic metals adsorbed on small macroplastics in urban roadside soils in South-eastern Nigeria. Journal of Hazardous Materials Advances. 7, 100122. DOI: https://doi.org/10.1016/j.hazadv.2022.100122
[14] Andrady, A.L., Neal, M.A., 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences. 364(1526), 1977–1984. DOI: https://doi.org/10.1098/rstb.2008.0304
[15] Rota, E., Bergami, E., Corsi, I., et al., 2022. Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives. Environments. 9(7), 93. DOI: https://doi.org/10.3390/environments9070093
[16] Kumar, R., Verma, A., Shome, A., et al., 2021. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability. 13(17), 9963. DOI: https://doi.org/10.3390/su13179963
[17] van Raamsdonk, L.W., van der Zande, M., Koelmans, A.A., et al., 2020. Current insights into monitoring, bioaccumulation, and potential health effects of microplastics present in the food chain. Foods. 9(1), 72. DOI: https://doi.org/10.3390/foods9010072
[18] Ahrendt, C., Perez-Venegas, D.J., Urbina, M., et al., 2020. Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Marine Pollution Bulletin. 151, 10. DOI: https://doi.org/10.1016/j.marpolbul.2019.110795
[19] Koelmans, A., Besseling, E., Foekema, E., 2014. Leaching of Plastic Additives to Marine Organisms. Environmental Pollution. 187, 49–54. DOI: https://doi.org/10.1016/j.envpol.2013.12.013
[20] Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., 2015. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research. 75, 63–82. DOI: https://doi.org/10.1016/j.watres.2015.02.012
[21] Ubomba-Jaswa, E., Kalebaila, N., 2020. Framing the plastic pollution problem within the water quality–health nexus: Current understandings and policy recommendations. South African Journal of Science. 116(5/6), 1–3. DOI: https://doi.org/10.17159/sajs.2020/8115
[22] Andrés, M., Delpey, M., Ruiz, I., et al., 2021. Measuring and comparing solutions for floating marine litter removal: Lessons learned in the south-east coast of the Bay of Biscay from an economic perspective. Marine Policy. 127, 104450. DOI: https://doi.org/10.1016/j.marpol.2021.104450
[23] Jimenez-Lopez, J., Mulero-Pazmany, M., 2019. Drones for conservation in protected areas: present and future. Drones. 3(1), 10. DOI: https://doi.org/10.3390/drones3010010
[24] Zielinski, O., Busch, J.A., Cembella, A.D., et al., 2009. Detecting marine hazardous substances and organisms: Sensors for pollutants, toxins, and pathogens. Ocean Science. 5(3), 329–349. DOI: https://doi.org/10.5194/os-5-329-2009
[25] Armitage, S., Awty-Carroll, K., Clewley, D., et al., 2022. Detection and Classification of Floating Plastic Litter Using a Vessel-Mounted Video Camera and Deep Learning. Remote Sensing. 14(14), 3425. DOI: https://doi.org/10.3390/rs14143425
[26] Lebreton, L.C.M., Van Der Zwet, J., Damsteeg, J., et al., 2017. River plastic emissions to the world's oceans. Nature Communications. 8(1), 15611. DOI: https://doi.org/10.1038/ncomms15611
[27] Goddijn-Murphy, L., Martínez-Vicente, V., Dierssen, H.M., et al., 2024. Emerging Technologies for Remote Sensing of Floating and Submerged Plastic Litter. Remote Sensing. 16(10), 1770. DOI: https://doi.org/10.3390/rs16101770
[28] Martínez-Vicente, V., Clark, J.R., Corradi, P., et al., 2019. Measuring marine plastic debris from space: initial assessment of observation requirements. Remote Sensing. 11(20), 2443. DOI: https://doi.org/10.3390/rs11202443
[29] Chen, Z., Si, W., Johnson, V.C., et al., 2024. Remote sensing research on plastics in marine and inland water: Development, opportunities and challenge. Journal of Environmental Management. 373, 123815. DOI: https://doi.org/10.1016/j.jenvman.2024.123815
[30] Tasseron, P., Zinsmeister, H., Rambonnet, L., et al., 2020. Plastic Hotspot Mapping in Urban Water Systems. Geosciences. 10(9), 342. DOI: https://doi.org/10.3390/geosciences10090342
[31] Topouzelis, K., Papageorgiou, D., Karagaitanakis, A., et al., 2020. Remote sensing of sea surface artificial floating plastic targets with Sentinel2 and unmanned aerial systems (plastic litter project 2019). Remote Sensing. 12(12), 2013. DOI: https://doi.org/10.3390/rs12122013
[32] Forkuor, G., Ullmann, T., Griesbeck, M., 2020. Mapping and Monitoring Small-Scale Mining Activities in Ghana using Sentinel-1 Time Series (2015–2019). Remote Sensing. 12(6), 911. DOI: https://doi.org/10.3390/rs12060911
[33] Dubbini, M., De Giglio, M., Cortesi, I., et al., 2020. Plastics waste identification in river ecosystems by multispectral proximal sensing: A preliminary methodology study. Water and Environment Journal. 35(2), 569–579. DOI: https://doi.org/10.1111/wej.12658
[34] Pichel, W.G., Veenstra, T.S., Churnside, J.H., et al., 2012. Ghost Net marine debris survey in the Gulf of Alaska—Satellite guidance and aircraft observations. Marine Pollution Bulletin. 65(1–3), 28–41. DOI: https://doi.org/10.1016/j.marpolbul.2011.10.009
[35] Goddijn-Murphy, L., Peters, S., Van Sebille, E., et al., 2018. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics. Marine Pollution Bulletin. 126, 255–262. DOI: https://doi.org/10.1016/j.marpolbul.2017.11.011
[36] Howe, K.L., Dean, C.W., Kluge, J., et al., 2018. Relative abundance of Bacillus spp., surfactant-associated bacterium present in a natural sea slick observed by satellite SAR imagery over the Gulf of Mexico. Elementa: Science of the Anthropocene. 6(1), 8. DOI: https://doi.org/10.1525/elementa.268
[37] Nazeer, M., Nichol, J.E., 2015. Combining landsat TM/ETM+ and HJ-1 A/B CCD sensors for monitoring coastal water quality in Hong Kong. IEEE Geoscience and Remote Sensing Letters. 12(9), 1898–1902. DOI: https://doi.org/10.1109/LGRS.2015.2436899
[38] Khorram, S., Cheshire, H., Geraci, A.L., et al., 1991. Water quality mapping of Augusta Bay, Italy from Landsat-TM data. International Journal of Remote Sensing. 12(4), 803–808. DOI: https://doi.org/10.1080/01431169108929696
[39] Lim, J., Choi, M., 2015. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environmental Monitoring and Assessment. 187, 384. DOI: https://doi.org/10.1007/s10661-015-4616-1
[40] Topouzelis, K., Papakonstantinou, A., Garaba, S.P., 2019. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). International Journal of Applied Earth Observation and Geoinformation. 79, 175–183. DOI: https://doi.org/10.1016/j.jag.2019.03.011
[41] Themistocleous, K., Papoutsa, C., Michaelides, S., et al., 2020. Investigating Detection of Floating Plastic Litter from Space Using Sentinel-2 Imagery. Remote Sensing. 12(16), 2648. DOI: https://doi.org/10.3390/rs12162648
[42] Biermann, L., Clewley, D., Martinez-Vicente, V., et al., 2020. Finding plastic patches in coastal waters using optical satellite data. Scientific Reports. 10(1), 5364. DOI: https://doi.org/10.1038/s41598-020-62298-z
[43] Kikaki, A., Karantzalos, K., Power, C.A., et al., 2020. Remotely Sensing the Source and Transport of Marine Plastic Debris in Bay Islands of Honduras (Caribbean Sea). Remote Sensing. 12(11), 1727. DOI: https://doi.org/10.3390/rs12111727
[44] Garaba, S.P., Aitken, J., Slat, B., et al., 2018. Sensing ocean plastics with an airborne hyperspectral shortwave infrared imager. Environmental Science & Technology. 52(20), 11699–11707. DOI: https://doi.org/10.1021/acs.est.8b02855
[45] Proshad, R., Islam, M.S., Kormoker, T., et al., 2018. Toxic effects of plastic on human health and environment: A consequences of health risk assessment in Bangladesh. International Journal of Health. 6(1), 1–5. DOI: https://doi.org/10.14419/ijh.v6i1.8655
[46] Mourshed, M., Masud, M.H., Rashid, F., et al., 2017. Towards the effective plastic waste management in Bangladesh: a review. Environmental Science and Pollution Research. 24(35), 27021–27046. DOI: https://doi.org/10.1007/s11356-017-0429-9
[47] Miloloža, M., Kučić Grgić, D., Bolanča, T., et al., 2021. Ecotoxicological Assessment of Microplastics in Freshwater Sources—A Review. Water. 13, 56. DOI: https://doi.org/10.3390/w13010056
[48] Chadar, S., Keerti, C., 2017. Solid Waste Pollution: A Hazard to Environment. Recent Advances in Petrochemical Science. 2(3), 555586. DOI: https://doi.org/10.19080/RAPSCI.2017.02.555586
[49] Thompson, R.C., Moore, C.J., Vom Saal, F.S., et al., 2009. Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences. 364(1526), 2153–2166. DOI: https://doi.org/10.1098/rstb.2009.0053
[50] Lackner, M., Branka, M., 2024. Microplastics in Farmed Animals—A Review. Microplastics. 3(4), 559–588. DOI: https://doi.org/10.3390/microplastics3040035
[51] Rajmohan, K.V.S., Ramya, C., Viswanathan, M.R., et al., 2019. Plastic pollutants: effective waste management for pollution control and abatement. Current Opinions in Environmental Science and Health. 12, 72–84. DOI: https://doi.org/10.1016/j.coesh.2019.08.006
[52] Godfrey, L., 2019. Waste plastic, the challenge facing developing countries—Ban it, change it, collect it? Recycling. 4(1), 3. DOI: https://doi.org/10.3390/recycling4010003
[53] Alabi, O.A., Ologbonjaye, K.I., Awosolu, O., et al., 2019. Public and Environmental Health Effects of Plastic Wastes Disposal: A Review. Journal of Toxicology and Risk Assessment. 5(021), 1–13. DOI: https://doi.org/10.23937/2572-4061.1510021
[54] Worm, B., Lotze, H.K., Jubinville, I., et al., 2017. Plastic as a Persistant Marine Pollutant. Annual Review of Environment and Resources. 42(1), 1–26. DOI: https://doi.org/10.1146/annurev-environ-102016-060700
[55] Eagan, J.M., Xu, J., Di Girolamo, R., et al., 2017. Combining polyethylene and polypropylene: Enhanced performance with PE/iPP multiblock polymers. Science. 355(6327), 814–816. DOI: https://doi.org/10.1126/science.aah5744
[56] Dowty, B.J., Laseter, J.L., Storer, J., 1976. The transplacental migration and accumulation in blood of volatile organic constituents. Pediatric Research. 10(7), 696–701. DOI: https://doi.org/10.1203/00006450-197607000-00013
[57] Wright, S.L., Thompson, R.C., Galloway, T.S., 2013. The physical impacts of microplastics on marine organisms: A review. Environmental Pollution. 178, 483–492. DOI: https://doi.org/10.1016/j.envpol.2013.02.031
[58] USEPA, 2002. Assessing and monitoring floatable debris. Oceans and Coastal Protection Division, Office of Wetlands, Oceans, and Watersheds, Office of Water, US Environmental Protection Agency: Washington DC, USA. Available from: https://www.epa.gov/sites/default/files/2018-12/documents/assess-monitor-floatable-debris.pdf (cited 24 March 2025).
[59] Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin. 44(9), 842–852. DOI: https://doi.org/10.1016/S0025-326X(02)00220-5
[60] Pawar, P.R., Shirgaonkar, S.S., Patil, R.B., 2016. Plastic marine debris: Sources, distribution and impacts on coastal and ocean biodiversity. PENCIL Publication of Biological Sciences. 3(1), 40–54.
[61] Pichel, W.G., Churnside, J.H., Veenstra, T.S., et al., 2007. Marine debris collects within the North Pacific Subtropical Convergence Zone. Marine Pollution Bulletin. 54(8), 1207–1211. DOI: https://doi.org/10.1016/j.marpolbul.2007.04.010
[62] Morishige, C., Donohue, M.J., Flint, E., et al., 2007. Factors affecting marine debris deposition at French Frigate Shoals, North western Hawaiian Islands Marine National Monument, 1990-2006. Marine Pollution Bulletin. 54(8), 1162–1169. DOI: https://doi.org/10.1016/j.marpolbul.2007.04.014
[63] Bhardwaj, L.K., Jindal, T., 2019. Persistent organic pollutants in lakes of Grovnes Peninsula at Larsemann Hill area, East Antarctica. Earth System and Environment. 28, 589–596. DOI: https://doi.org/10.1007/s10646-019-02045-x
[64] Zettler, E.R., Mincer, T.J., Amaral-Zettler, L.A., 2013. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environmental Science and Technology. 47(13), 7137–7146. DOI: https://doi.org/10.1021/es401288x
[65] Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin. 62(8), 1596–1605. DOI: https://doi.org/10.1016/j.marpolbul.2011.05.030
[66] Dai, J., Liu, P., Wang, C., et al., 2023. Which factors mainly drive the photoaging of microplastics in freshwater? Science of the Total Environment. 858, 159845. DOI: https://doi.org/10.1016/j.scitotenv.2022.159845
[67] Hahladakis, J.N., Velis, C.A., Weber, R., et al., 2018. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials. 344, 179–199. DOI: https://doi.org/10.1016/j.jhazmat.2017.10.014
[68] Zhang, W.W., Ma, X.D., Zhang, Z.F., et al., 2015. Persistent organic pollutants carried on plastic resin pellets from two beaches in China. Marine Pollution Bulletin. 99(1–2), 28–34. DOI: https://doi.org/10.1016/j.marpolbul.2015.08.002
[69] Chen, Q.Q., Zhang, H.B., Allgeier, A., et al., 2019. Marine microplastics bound dioxin-like chemicals: model explanation and risk assessment. Journal of Hazardous Materials. 364, 82–90. DOI: https://doi.org/10.1016/j.jhazmat.2018.10.032
[70] Hassan, Y.A.M., Badrey, A.E.A., Osman, A.G.M., et al., 2023. Occurrence and distribution of meso‑ and macroplastics in the water, sediment, and fauna of the Nile River, Egypt. Environmental Monitoring and Assessment. 195(9), 1130. DOI: https://doi.org/10.1007/s10661-023-11696-7
[71] Peng, L., Fu, D., Qi, H., et al., 2020. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Science of the Total Environment. 698, 134254. DOI: https://doi.org/10.1016/j.scitotenv.2019.134254
[72] Gopinath, P.M., Saranya, V., Vijayakumar, S., et al., 2019. Assessment on interactive prospective of nanoplastics with plasma proteins and the toxicological impacts of virgin, coroneted and environmentally released-nanoplastics. Scientific Reports. 9(1), 8860. DOI: https://doi.org/10.1038/s41598-019-45139-6
[73] Gkanasos, A., Tsiaras, K., Triantaphyllidis, G., et al., 2021. Stopping Macroplastic and Microplastic Pollution at Source by Installing Novel Technologies in River Estuaries and Waste Water Treatment Plants: The CLAIM Project. Frontiers in Marine Science. 8, 738876. DOI: https://doi.org/10.3389/fmars.2021.738876
[74] Inkielewicz-Stepniak, I., Tajber, L., Behan, G., et al., 2018. The role of Mucin in the toxicological impact of polystyrene nanoparticles. Materials. 11(5), 724. DOI: https://doi.org/10.3390/ma11050724
[75] Kehinde, O., Ramonu, O.J., Babaremu, K.O., et al., 2020. Plastic wastes: environmental hazard and instrument for wealth creation in Nigeria. Heliyon. 6(10), e05131. DOI: https://doi.org/10.1016/j.heliyon.2020.e05131
[76] Danilov, A., Serdiukova, E., 2024. Review of Methods for Automatic Plastic Detection in Water Areas Using Satellite Images and Machine Learning. Sensors. 24(16), 5089. DOI: https://doi.org/10.3390/s24165089
[77] Adamo, N., Al-Ansari, N., Ali, S.H., et al., 2020. Dams Safety: Review of Satellite Remote Sensing Applications to Dams and Reservoirs. Journal of Earth Sciences and Geotechnical Engineering. 11(1), 347–438. DOI: https://doi.org/10.47260/jesge/1119
[78] Collins Aero Space, 2020. Laser Radar/LIDAR/LADAR including Eye-safe Lasers.
[79] Jia, J., Sun, H., Jiang, C., et al., 2021. Review on Active and Passive Remote Sensing Techniques for Road Extraction. Remote Sensing. 13(21), 4235. DOI: https://doi.org/10.3390/rs13214235
[80] Jung, J., Kim, D., Lavalle, M., et al., 2016. Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection. IEEE Transactions on Geoscience and Remote Sensing. 54(10), 5765–5775. DOI: https://doi.org/10.1109/TGRS.2016.2572166
[81] Monti-Guarnieri, A.V., Brovelli, M.A., Manzoni, M., et al., 2018. Coherent Change Detection for Multipass SAR. IEEE Transactions on Geoscience and Remote Sensing. 56(11), 6811–6822. DOI: https://doi.org/10.1109/TGRS.2018.2843560
[82] Simpson, M.D., Marino, A., de Maagt, P., et al., 2022. Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data. Remote Sensing. 14(18), 4473. DOI: https://doi.org/10.3390/rs14184473
[83] Simpson, M.D., Marino, A., de Maagt, P., et al., 2023. Investigating the Backscatter of Marine Plastic Litter Using a C- and X-Band Ground Radar, during a Measurement Campaign in Deltares. Remote Sensing. 15(6), 1654. DOI: https://doi.org/10.3390/rs15061654
[84] Cheng, L., Wu, Y., Wang, Y., et al., 2015. Three-Dimensional Reconstruction of Large Multilayer Interchange Bridge Using Airborne LiDAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 8(2), 691–708. DOI: https://doi.org/10.1109/JSTARS.2014.2363463
[85] Lu, X., Hu, Y., Trepte, C., et al., 2014. Ocean subsurface studies with the CALIPSO spaceborne lidar. Journal of Geophysical Research: Oceans. 119(7), 4305–4317. DOI: https://doi.org/10.1002/2014JC009970
[86] Parrish, C.E., Magruder, L.A., Neuenschwander, A.L., et al., 2019. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS's Bathymetric Mapping Performance. Remote Sensing. 11(14), 1634. DOI: https://doi.org/10.3390/rs11141634
[87] Palombi, L., Raimondi, V., 2022. Experimental Tests for Fluorescence LiDAR Remote Sensing of Submerged Plastic Marine Litter. Remote Sensing. 14(23), 5914. DOI: https://doi.org/10.3390/rs14235914
[88] Ge, Z., Shi, H., Mei, X., et al., 2016. Semi-automatic recognition of marine debris on beaches. Scientific Reports. 6(1), 25759. DOI: https://doi.org/10.1038/srep25759
[89] Goddijn-Murphy, L., Williamson, B., 2019. On Thermal Infrared Remote Sensing of Plastic Pollution in Natural Waters. Remote Sensing. 11(18), 2159. DOI: https://doi.org/10.3390/rs11182159
[90] Garaba, S.P., Acuna-Ruz, T., Mattar, C.B., 2020. Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells. Earth System Science Data. 12(4), 2665–2678. DOI: https://doi.org/10.5194/essd-12-2665-2020
[91] Chirayath, V., Li, A., 2019. Next-Generation Optical Sensing Technologies for Exploring Ocean Worlds—NASA FluidCam, MiDAR, and NeMO-Net. Frontiers in Marine Science. 6, 521. DOI: https://doi.org/10.3389/fmars.2019.00521
[92] Chirayath, V., Bagshaw, E., Craft, K., 2022. Oceans across the Solar System and the Search for Extraoceanic Life: Technologies for Remote Sensing and In Situ Exploration. Oceanography. 35(1), 54–65. DOI: https://doi.org/10.5670/oceanog.2021.416
[93] Mukonza, S.S., Chiang, J.L., 2022. Satellite sensors as an emerging technique for monitoring macro- and microplastics in aquatic ecosystems. Water Emerging Contaminants and Nanoplastics. 1(4), 17. DOI: https://doi.org/10.20517/wecn.2022.12
[94] Zhou, W., Yang, S., Wang, P.G., 2017. Matrix effects and application of matrix effect factor. Bioanalysis. 9(23), 1839–1844. DOI: https://doi.org/10.4155/bio-2017-0214
[95] Rokni, K., Ahmad, A., Selamat, A., et al., 2014. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sensing. 6(5), 4173–4189. DOI: https://doi.org/10.3390/rs6054173
[96] Sannigrahi, S., Basu, B., Basu, A.S., et al., 2022. Development of automated marine floating plastic detection system using Sentinel-2 imagery and machine learning models. Marine Pollution Bulletin. 178, 113527. DOI: https://doi.org/10.1016/j.marpolbul.2022.113527
[97] Hu, C., 2009. A novel ocean colour index to detect floating algae in the global oceans. Remote Sensing of Environment. 113(10), 2118–2129. DOI: https://doi.org/10.1016/j.rse.2009.05.012
[98] Topouzelis, K., Papageorgiou, D., Suaria, G., et al., 2021. Floating marine litter detection algorithms and techniques using optical remote sensing data: A review. Marine Pollution Bulletin. 170, 112675. DOI: https://doi.org/10.1016/j.marpolbul.2021.112675
[99] Feyisa, G.L., Meilby, H., Fensholt, R., et al., 2014. Automated water extraction index: a new technique for surface water mapping using landsat imagery. Remote Sensing of Environment. 140, 23–35. DOI: https://doi.org/10.1016/j.rse.2013.08.029
[100] Guimarães, T.T., Veronez, M.R., Koste, E.C., et al., 2017. An Alternative Method of Spatial Autocorrelation for Chlorophyll Detection in Water Bodies Using Remote Sensing. Sustainability. 9(3), 416. DOI: https://doi.org/10.3390/su9030416
[101] Liu, H., Sun, K., Liu, X., et al., 2022. Spatial and temporal distributions of microplastics and their macroscopic relationship with algal blooms in Chaohu Lake, China. Journal of Contaminant Hydrology. 248, 104028. DOI: https://doi.org/10.1016/j.jconhyd.2022.104028
[102] Mansui, J., Molcard, A., Ourmières, Y., 2015. Modelling the transport and accumulation of floating marine debris in the Mediterranean basin. Marine Pollution Bulletin. 91(1), 249–257. DOI: https://doi.org/10.1016/j.marpolbul.2014.11.037
[103] Martin, C., Parkes, S., Zhang, Q., et al., 2018. Use of unmanned aerial vehicles for efficient beach litter monitoring. Marine Pollution Bulletin. 131, 662–673. DOI: https://doi.org/10.1016/j.marpolbul.2018.04.045
[104] Nivedita, V., Begum, S.S., Aldehim, G., et al., 2024. Plastic debris detection along coastal waters using Sentinel-2 satellite data and machine learning techniques. Marine Pollution Bulletin. 209(Part A), 117106. DOI: https://doi.org/10.1016/j.marpolbul.2024.117106
[105] Jamali, A., Mahdianpari, M., 2021. A cloud-based framework for large-scale monitoring of ocean plastics using multi-spectral satellite imagery and generative adversarial network. Water. 13(18), 2553. DOI: https://doi.org/10.3390/w13182553
[106] Basu, B., Sannigrahi, S., Basu, S.A., et al., 2021. Development of novel classification algorithms for detection of floating plastic debris in coastal water bodies using multispectral Sentinel-2 remote sensing imagery. Remote Sensing. 13(8), 1598. DOI: https://doi.org/10.3390/rs13081598
[107] Oberski, T., Walendzik, B., Szejnfeld, M., 2025. The Monitoring of Macroplastic Waste in Selected Environment with UAV and Multispectral Imaging. Sustainability. 17(5), 1997. DOI: https://doi.org/10.3390/su17051997
[108] Moy, K., Neilson, B., Chung, A., et al., 2017. Mapping coastal marine debris using aerial imagery and spatial analysis. Marine Pollution Bulletin. 132, 52–59. DOI: https://doi.org/10.1016/j.marpolbul.2017.11.045
[109] Liubartseva, S., Coppini, G., Lecci, R., et al., 2016. Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Marine Pollution Bulletin. 103(1–2), 115–127. DOI: https://doi.org/10.1016/j.marpolbul.2015.12.031
[110] Zhao, Q., Zhang, H., Li, Y., 2019. Detecting dark spots from SAR intensity images by a point process with irregular geometry marks. International Journal of Remote Sensing. 40(2), 774–793. DOI: https://doi.org/10.1080/01431161.2018.1519278
[111] Karakuş, O., 2023. On advances, challenges and potentials of remote sensing image analysis in marine debris and suspected plastics monitoring. Frontiers Remote Sensing. 4, 1302384. DOI: https://doi.org/10.3389/frsen.2023.1302384
[112] Papageorgiou, D., Topouzelis, K., Suaria, G., et al., 2022. Sentinel-2 detection of floating marine litter targets with partial spectral unmixing and spectral comparison with other floating materials (plastic litter project 2021). Remote Sensing. 14(23), 5997. DOI: https://doi.org/10.3390/rs14235997
[113] Qi, L., Lee, Z., Hu, C., et al., 2017. Requirement of minimal signal-to-noise ratios of ocean color sensors and uncertainties of ocean colour products. Journal of Geophysical Research: Oceans. 122(3), 2595–2611. DOI: https://doi.org/10.1002/2016JC012558
[114] Nguyen, C.T., Chidthaisong, A., Diem, P.K., et al., 2021. A modified bare soil index to identify bare land features during agricultural fallow-period in Southeast Asia using Landsat 8. Land. 10(3), 231. DOI: https://doi.org/10.3390/land10030231
[115] Watt, E., Picard, M., Maldonado, B., et al., 2021. Ocean plastics: environmental implications and potential routes for mitigation – a perspective. RSC Advances. 11(35), 21447. DOI: https://doi.org/10.1039/d1ra00353d
[116] Dumbili, E., Henderson, L., 2020. The challenge of plastic pollution in Nigeria. In: Letcher, T.M. (ed.). Plastic Waste and Recycling. Academic Press: New York, USA. pp. 569–583. DOI: https://doi.org/10.1016/B978-0-12-817880-5.00022-0
[117] Kibria, G., Masuk, N.I., Safayet, R., et al., 2023. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. International Journal of Remote Sensing. 17(1), 20. DOI: https://doi.org/10.1007/s41742-023-00507-z
[118] Babayemi, J.O., Ogundiran, M.B., Weber, R., et al., 2018. Initial inventory of plastics imports in Nigeria as a basis for more sustainable management policies. Journal of Health Pollution. 8(18), 180601. DOI: https://doi.org/10.5696/22156-9614-8.18.1
[119] Ayodele, T.R., Ogunjuyigbe, A.S.O., Durodola, O., et al., 2019. Electricity generation potential and environmental assessment of bio-oil derivable from pyrolysis of plastic in some selected cities of Nigeria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 42(10), 1167–1182. DOI: https://doi.org/10.1080/15567036.2019.1602226
[120] Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., et al., 2018. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. IOP Conference Series: Materials Science and Engineering. 334, 1–10. DOI: https://doi.org/10.1016/j.cellimm.2018.08.009
[121] Prata, J.C., da Costa, J.P., Lopes, I., et al., 2020. Environmental status of (micro) plastics contamination in Portugal. Ecotoxicology and Environmental Safety. 200, 110753. DOI: https://doi.org/10.1016/j.ecoenv.2020.110753
[122] Altuğ, H., Erdoğan, Ş., 2022. Wastewater Treatment Plants as a Point Source of Plastic Pollution. Water Air Soil Pollut. 233(12), 488. DOI: https://doi.org/10.1007/s11270-022-05962-6
[123] Ogundairo, T.O., Olukanni, D.O., Akinwumi, I.I., et al., 2021. A review on plastic waste as sustainable resource in civil engineering applications. IOP Conference Series: Materials Science and Engineering. 1036(1), 012019. DOI: https://doi.org/10.1088/1757-899X/1036/1/012019
[124] Aneke, F.I., Shabangu, C., 2021. Green-efficient masonry bricks produced from scrap plastic waste and foundry sand. Case Studies in Construction Materials. 14, e00515. DOI: https://doi.org/10.1016/j.cscm.2021.e00515
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Innocent Mugudamani, Saheed Adeyinka Oke, Hassan Ikrema

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.