Intrinsic Photoconductivity of Few-layered ZrS2 Phototransistors via Multiterminal Measurements
DOI:
https://doi.org/10.30564/ssid.v1i2.1526Abstract
We report intrinsic photoconductivity studies on one of the least examinedlayered compounds, ZrS2.Few-atomic layer ZrS2 field-effect transistorswere fabricated on the Si/SiO2 substrate and photoconductivity measurements were performed using both two- and four-terminal configurationsunder the illumination of 532 nm laser source. We measured photocurrentas a function of the incident optical power at several source-drain (bias)voltages. We observe a significantly large photoconductivity when measured in the multiterminal (four-terminal) configuration compared to thatin the two-terminal configuration. For an incident optical power of 90nW, the estimated photosensitivity and the external quantum efficiency(EQE) measured in two-terminal configuration are 0.5 A/W and 120%,respectively, under a bias voltage of 650 mV. Under the same conditions,the four-terminal measurements result in much higher values for both thephotoresponsivity (R) and EQE to 6 A/W and 1400%, respectively. Thissignificant improvement in photoresponsivity and EQE in the four-terminal configuration may have been influenced by the reduction of contactresistance at the metal-semiconductor interface, which greatly impacts thecarrier mobility of low conducting materials. This suggests that photoconductivity measurements performed through the two-terminal configurationin previous studies on ZrS2 and other 2D materials have severely underestimated the true intrinsic properties of transition metal dichalcogenides andtheir remarkable potential for optoelectronic applications.Keywords:
Field-effect transistors; Zirconium sulphide; Phototransistor; Responsivity; Quantum efficiencyReferences
[1] H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.J. Li, M. Dubey, J. Kong, T. Palacios. Integrated circuits based on bilayer MoS2 transistors, Nano letters, 2012, 12: 4674.
[2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors, Nature nanotechnology, 2011, 6: 147.
[3] N. R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B.-H. Moon, H. Terrones, M. Terrones, and L. Balicas, Field-effect transistors based on few-layered α-MoTe2, ACS nano, 2014, 8: 5911.
[4] N. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P. Ajayan, L. Balicas. Intrinsic carrier mobility of multi-layered mos2 field-effect transistors on SiO2, Applied Physics Letters, 2013, 102: 123105.
[5] N. R. Pradhan, D. Rhodes, Y. Xin, S. Memaran, L. Bhaskaran, M. Siddiq, S. Hill, P. M. Ajayan, L. Balicas. Ambipolar molybdenum diselenide field-effect transistors: field-effect and hall mobilities, Acs Nano, 2014, 8: 7923.
[6] N. R. Pradhan, J. Ludwig, Z. Lu, D. Rhodes, M. M. Bishop, K. Thirunavukkuarasu, S. A. McGill, D. Smirnov, L. Balicas. High photoresponsivity and short photoresponse times in few-layered WSe2 transistors, ACS applied materials & interfaces, 2015, 7:12080.
[7] S. Memaran, N. R. Pradhan, Z. Lu, D. Rhodes, J. Lud- wig, Q. Zhou, O. Ogunsolu, P. M. Ajayan, D. Smirnov, A. Fernandez-Dom´ınguez, et al.. Pronounced photovoltaic response from multilayered transition-metal dichalcogenides pn-junctions, Nano letters, 2015, 15: 7532.
[8] N. R. Pradhan, Z. Lu, D. Rhodes, D. Smirnov E. Manousakis, L. Balicas. An optoelectronic switch based on intrinsic dual schottky diodes in ambipolar MoSe2 field-effect transistors, Advanced Electronic Materials, 2015, 1: 1500215.
[9] N. R. Pradhan, C. Garcia, B. Isenberg, D. Rhodes, S. Feng, S. Memaran, Y. Xin, A. McCreary, A. R. H. Walker, A. Raeliarijaona, et al.. Phase modulators based on high mobility ambipolar rese 2 field-effect transistors, Scientific reports, 2018, 8: 12745.
[10] C. Garcia, N. Pradhan, D. Rhodes, L. Balicas. S. McGill. Photogating and high gain in res2 field-effect transistors, Journal of Applied Physics, 2018, 124: 204306.
[11] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo. Electronics based on two-dimensional materials, Nature nanotechnology, 2014, 9: 768.
[12] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature nanotechnology, 2012, 7: 699.
[13] W. Zhang, Z. Huang, W. Zhang, Y. Li. Two-dimensional semiconductors with possible high room temperature mobility, Nano Research, 2014, 7: 1731.
[14] H. Guo, N. Lu, L. Wang, X. Wu, X. C. Zeng, Tuningelectronic and magnetic properties of early transitionmetal dichalcogenides via tensile strain, The Journal of Physical Chemistry C, 2014, 118: 7242.
[15] Y. Li, J. Kang, J. Li. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first- principles calculations, Rsc Advances, 2014, 4, 7396.
[16] A. Kumar, H. He, R. Pandey, P. Ahluwalia, K. Tankeshwar, Semiconductor-to-metal phase transition in monolayer ZrS2: Gga+ u study, in AIP Conference Proceedings (AIP Publishing, 2015, 1665: 090016.
[17] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr, S. T. Pantelides, K. I. Bolotin. Bandgap engineering of strained monolayer and bilayer MoS2, Nano letters, 2013, 13: 3626.
[18] T. Cheiwchanchamnangij, W. R. Lambrecht, Quasi-particle band structure calculation of monolayer, bilayer, and bulk MoS2, Physical Review B, 2012, 85: 205302.
[19] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically thin MoS2: a new direct gap semiconductor, Physical review letters, 2010, 105: 136805.
[20] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Raden-ovic, A. Kis. Ultrasensitive photodetectors based on monolayer MoS2, Nature nanotechnology, 2013, 8: 497.
[21] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang. Single-layer MoS2 phototransistors, ACS nano, 2011, 6: 74.
[22] D. Kufer, G. Konstantatos. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed, Nano letters, 2015, 15: 7307.
[23] J. Pak, J. Jang, K. Cho, T.-Y. Kim, J.-K. Kim, Y. Song, W.-K. Hong, M. Min, H. Lee, T. Lee. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine, Nanoscale, 2015, 7: 18780.
[24] G. Wu, X. Wang, Y. Chen, Z. Wang, H. Shen, T. Lin, W. Hu, J. Wang, S. Zhang, X. Meng, et al.. Ultrahigh photoresponsivity MoS2 photodetector with tunable photocurrent generation mechanism, Nanotechnology, 2018, 29: 485204.
[25] W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G.-B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, et al.High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared, Advanced materials, 2012, 24: 5832.
[26] D.-S. Tsai, K.-K. Liu, D.-H. Lien, M.-L. Tsai, C.-F. Kang, C.-A. Lin, L.-J. Li, J.-H. He. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments, Acs Nano, 2013, 7: 3905.
[27] H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, S. Im. Mos2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano letters, 2012, 12: 3695
[28] A. Abderrahmane, P. Ko, T. Thu, S. Ishizawa, T. Takamura, and A. Sandhu, High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors, Nanotechnology 25, 365202 (2014).
[29] N. Pradhan, D. Rhodes, S. Memaran, J. Poumirol, D. Smirnov, S. Talapatra, S. Feng, N. Perea-Lopez, A. Elias, M. Terrones, et al.. Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors, Scientific reports, 2015, 5: 8979.
[30] W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li, A. T. S. Wee. Role of metal contacts in high-performance phototransistors based on wse2 monolayers, ACS nano, 2014, 8: 8653.
[31] N. R. Pradhan, C. Garcia, J. Holleman, D. Rhodes, C. Parker, S. Talapatra, M. Terrones, L. Balicas, S. A. McGill,Photoconductivity of few-layered p-WSe2 phototransistors via multi-terminal measurements, 2D Materials, 2016, 3: 041004.
[32] N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, J. Li, Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes, Scientific reports, 2014, 4: 5209.
[33] N. R. Pradhan, A. McCreary, D. Rhodes, Z. Lu, S. Feng, E. Manousakis, D. Smirnov, R. Namburu, M. Dubey, A. R. Hight Walker, et al.. Metal to insulator quantum-phase transition in few-layered ReS2, Nano letters, 2015, 15: 8377.
[34] Y. Wen, Y. Zhu, S. Zhang. Low temperature synthesis of ZrS2 nanoflakes and their catalytic activity, RSC Advances, 2015, 5: 66082.
[35] S. Manas-Valero, V.Garcıa-Lopez, A.Cantarero, M. Galbiati. Raman spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers, Applied sciences, 2016, 6: 264.
[36] X. Wang, L. Huang, X.-W. Jiang, Y. Li, Z. Wei, J. Li. Large scale ZrS2 atomically thin layers, Journal of Materials Chemistry C, 2016, 4: 3143.
[37] M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui, J. Zhang, C. Cai, et al.. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride, Journal of the American Chemical Society, 2015, 137: 7051.
[38] Y. Zhu, X. Wang, M. Zhang, C. Cai, L. Xie. Thickness and temperature dependent electrical properties of ZrS2 thin films directly grown on hexagonal boron nitride, Nano Research, 2016, 9: 2931.
[39] Y. Shimazu, Y. Fujisawa, K. Arai, T. Iwabuchi, and K. Suzuki, Synthesis and characterization of zirconium disulfide single crystals and thin-film transistors based on multilayer zirconium disulfide flakes, ChemNanoMat, 2018, 4: 1078.
[40] M. Mattinen, G. Popov, M. Vehkamaki, P. J. King, K. Mizohata, P. Jalkanen, J. Raisanen, M. Leskela, M. Ritala. Atomic layer deposition of emerging 2d semiconductors, HfS2 and ZrS2, for optoelectronics, Chemistry of Materials,2019, 31: 5713.
[41] X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, C. Vineis, Silicon photodiodes with high photoconductive gain at room temperature, Optics Express, 2012, 20: 5518.
[42] R. K. Ulaganathan, Y. Y. Lu, C. J. Kuo, S. R. Tamalampudi, R. Sankar, K. M. Boopathi, A. Anand, K. Yadav, R. J. Mathew, C.-R. Liu, et al.. High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors, Nanoscale, 2016, 8: 2284.
[43] N. Perea-Lopez, Z. Lin, N. R. Pradhan, A. Iniguez Rabago, A. L. Elıas, A. McCreary, J. Lou, P. M. Ajayan, H. Terrones, L. Balicas, et al., CVD-grown monolayered MoS2 as an effective photosensor operating at low- voltage, 2D Materials 1, 011004, 2014.
[44] X. Zhang, Z. Meng, D. Rao, Y. Wang, Q. Shi, Y. Liu, H. Wu, K. Deng, H. Liu, R. Lu. Efficient band structure tuning, charge separation, visible-light response in ZrS2-based Van der Waals heterostructures, Energy & Environmental Science, 2016, 9: 841.
[45] H. So, D. G. Senesky, ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors, Applied Surface Science, 2016, 387: 280.
[46] D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, J. H. He, Solar-blind photodetectors for harsh electronics, Scientific reports, 2013, 3: 2628.
[47] C. Lien, D. S. Tsai, S. H. Chiu, D. G. Senesky, R. Maboudian, A. P. Pisano, and J. H. He, Low temperature, ion beam-assisted sic thin films with antireflective ZnO nanorod arrays for high temperature photodetection, IEEE Electron Device Letters, 2011, 32, 1564.
[48] T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, J. H. He. See-through Ga2O3 solar-blind photodetectors for use in harsh environments, IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 112.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2020 Rukshan M. Tanthirige, Carlos Garcia, Saikat Ghosh, Frederic Jackson II, Jawnaye Nash, Daniel Rosenmann, Ralu Divan, Liliana Stan, Anirudha V. Sumant, Stephen A. McGill, Nihar R. Pradhan
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.