
Biomass for a Circular Economy from Traditional Sectors: Mini Review
DOI:
https://doi.org/10.30564/jees.v7i8.10710Abstract
Sustainable alternatives have grown more prevalent due to an urgent need to address climate change, environmental degradation, and the depletion of non-renewable resources. As an inexhaustible and renewable resource, biomass has become an attractive option for energy production within the framework of a circular economy that emphasizes resource efficiency and environmental sustainability. Various kinds and sources of biomass, from forestry waste and agricultural residue to animal dung and microalgae, are fully explored in this mini review, along with their potential for biofuel production in both developed and developing countries. The processes for thermochemical and biochemical conversion, the sustainability of using biomass, and the socioeconomic advantages, especially for African countries, are highlighted. Key case studies demonstrating the value and potential of biomass waste in promoting sustainable energy transitions worldwide are also discussed in this review. Despite its potential, the use of biomass is restricted due to challenges including low conversion efficiency, high transportation costs, seasonal variability, and insufficient advancements in technology. Nonetheless, biomass offers an innovative approach for developing an environmentally friendly, efficient, and low-carbon economy that promotes sustainable development and energy security. Holistic approaches, such as increased regional cooperation, capacity building, technical innovation, and policy reform, must be implemented to address existing challenges.
Keywords:
Biomass; Circular Economy; Renewable Energy; Environmental SustainabilityReferences
[1] Saxena, R.C., Seal, D., Kumar, S., et al., 2008. Thermo-Chemical Routes for Hydrogen Rich Gas From Biomass: A Review. Renewable and Sustainable Energy Reviews. 12(7), 1909–1927. DOI: https://doi.org/10.1016/j.rser.2007.03.005
[2] Dirisu, J.O., Salawu, E.Y., Ekpe, I.C., et al., 2023. Promoting the Use of Bioenergy in Developing Nations: A CDM Route to Sustainable Development. Frontiers in Energy Research. 11, 1–27. DOI: https://doi.org/10.3389/fenrg.2023.1184348
[3] López-Viso, C., Hodaifa, G., Muñoz, M.J., 2022. Nematode Biomass Production From Sewage Sludge as a Novel Method for Circular Economy. Journal of Cleaner Production. 330, 129706. DOI: https://doi.org/10.1016/j.jclepro.2021.129706
[4] Song, C., Zhang, C., Zhang, S., et al., 2020. Thermochemical Liquefaction of Agricultural and Forestry Wastes Into Biofuels and Chemicals From Circular Economy Perspectives. Science of the Total Environment. 749, 141972. DOI: https://doi.org/10.1016/j.scitotenv.2020.141972
[5] Chojnacka, K., Moustakas, K., Witek-Krowiak, A., 2020. Bio-Based Fertilizers: A Practical Approach Towards Circular Economy. Bioresource Technology. 295, 122223. DOI: https://doi.org/10.1016/j.biortech.2019.122223
[6] Nizami, A.S., Rehan, M., Waqas, M., et al., 2017. Waste Biorefineries: Enabling Circular Economies in Developing Countries. Bioresource Technology. 241, 1101–1117. DOI: https://doi.org/10.1016/j.biortech.2017.05.097
[7] Donner, M., Gohier, R., de Vries, H., 2020. A New Circular Business Model Typology for Creating Value From Agro-Waste. Science of the Total Environment. 716, 137065. DOI: https://doi.org/10.1016/j.scitotenv.2020.137065
[8] Liguori, R., Faraco, V., 2016. Biological Processes for Advancing Lignocellulosic Waste Biorefinery by Advocating Circular Economy. Bioresource Technology. 215, 13–20. DOI: https://doi.org/10.1016/j.biortech.2016.04.054
[9] Di Maio, F., Rem, P.C., Baldé, K., et al., 2017. Measuring Resource Efficiency and Circular Economy: A Market Value Approach. Resources, Conservation and Recycling. 122, 163–171. DOI: https://doi.org/10.1016/j.resconrec.2017.02.009
[10] Kabil, M., Rahmat, A.F., Hegedüs, M., et al., 2024. Circular Economy and Tourism: A Bibliometric Journey Through Scholarly Discourse. Circular Economy. 2(1), 1–21. DOI: https://doi.org/10.55845/KGIV9907
[11] Petković, B., Agdas, A.S., Zandi, Y., et al., 2021. Neuro-Fuzzy Evaluation of Circular Economy Based on Waste Generation, Recycling, Renewable Energy, Biomass, and Soil Pollution. Rhizosphere. 19, 1004418. DOI: https://doi.org/10.1016/j.rhisph.2021.100418
[12] Velvizhi, G., Balakumar, K., Shetti, N.P., et al., 2022. Integrated Biorefinery Processes for Conversion of Lignocellulosic Biomass to Value-Added Materials: Paving a Path Towards Circular Economy. Bioresource Technology. 343, 126151. DOI: https://doi.org/10.1016/j.biortech.2021.126151
[13] Chew, K.W., Chia, S.R., Chia, W.Y., et al., 2021. Abatement of Hazardous Materials and Biomass Waste via Pyrolysis and Co-Pyrolysis for Environmental Sustainability and Circular Economy. Environmental Pollution. 278, 116836. DOI: https://doi.org/10.1016/j.envpol.2021.116836
[14] Ren, Y., Shen, G., Shen, H., et al., 2021. Contributions of Biomass Burning to Global and Regional SO₂ Emissions. Atmospheric Research. 260, 105709. DOI: https://doi.org/10.1016/j.atmosres.2021.105709
[15] Oluyinka, O.A., Oke, E.A., Oyelude, E.O., et al., 2022. Recapitulating Potential Environmental and Industrial Applications of Biomass Wastes. Journal of Material Cycles and Waste Management. 24, 2089–2107. DOI: https://doi.org/10.1007/s10163-022-01473-y
[16] Scott, A.F., Reilly, C.A., 2019. Wood and Biomass Smoke: Addressing Human Health Risks and Exposures. Chemical Research in Toxicology. 32(2), 219–221. DOI: https://doi.org/10.1021/acs.chemrestox.8b00318
[17] Elias, M.T., 2025. Waste to Value Innovations: Circular Economy for the Energy Sector. Springer: Singapore.
[18] Rueda-Ordóñez, Y.J., Tannous, K., Olivares-Gómez, E., 2015. An Empirical Model to Obtain the Kinetic Parameters of Lignocellulosic Biomass Pyrolysis in an Independent Parallel Reactions Scheme. Fuel Processing Technology. 140, 222–230. DOI: https://doi.org/10.1016/j.fuproc.2015.09.001
[19] Pan, H., 2011. Synthesis of Polymers From Organic Solvent Liquefied Biomass: A Review. Renewable and Sustainable Energy Reviews. 15(7), 3454–3463. DOI: https://doi.org/10.1016/j.rser.2011.05.002
[20] Gnanasekaran, L., Priya, A.K., Thanigaivel, S., et al., 2023. The Conversion of Biomass to Fuels via Cutting-Edge Technologies: Explorations From Natural Utilization Systems. Fuel. 331(Part1), 125668. DOI: https://doi.org/10.1016/j.fuel.2022.125668
[21] Motaung, T.E., Linganiso, L.Z., 2018. Critical Review on Agrowaste Cellulose Applications for Biopolymers. International Journal of Polymeric Materials and Polymeric Biomaterials. 22, 185–216. DOI: https://doi.org/10.1007/s12588-018-9219-6
[22] Vassilev, S.V., Baxter, D., Andersen, L.K., et al., 2013. An Overview of the Composition and Application of Biomass Ash. Part 1: Phase-Mineral and Chemical Composition and Classification. Fuel. 105, 40–76. DOI: https://doi.org/10.1016/j.fuel.2012.09.041
[23] Sharma, S., Basu, S., Shetti, N.P., et al., 2020. Waste-to-Energy Nexus for Circular Economy and Environmental Protection: Recent Trends in Hydrogen Energy. Science of the Total Environment. 713, 136633. DOI: https://doi.org/10.1016/j.scitotenv.2020.136633
[24] Ahmad, A.A., Zawawi, N.A., Kasim, F.H., et al., 2016. Assessing the Gasification Performance of Biomass: A Review on Biomass Gasification Process Conditions, Optimization, and Economic Evaluation. Renewable and Sustainable Energy Reviews. 53, 1333–1347. DOI: https://doi.org/10.1016/j.rser.2015.09.030
[25] Aysu, T., Küçük, M.M., 2014. Biomass Pyrolysis in a Fixed-Bed Reactor: Effects of Pyrolysis Parameters on Product Yields and Characterization of Products. Energy. 64, 1002–1025. DOI: https://doi.org/10.1016/j.energy.2013.11.053
[26] Manríquez-Altamirano, A., Sierra-Pérez, J., Muñoz, P., et al., 2020. Analysis of Urban Agriculture Solid Waste in the Frame of Circular Economy: Case Study of Tomato Crop in Integrated Rooftop Greenhouse. Science of the Total Environment. 734, 139375. DOI: https://doi.org/10.1016/j.scitotenv.2020.139375
[27] Ghisellini, P., Cialani, C., Ulgiati, S., 2016. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. Journal of Cleaner Production. 114, 11–32. DOI: https://doi.org/10.1016/j.jclepro.2015.09.007
[28] Winans, K., Kendall, A., Deng, H., 2017. The History and Current Applications of the Circular Economy Concept. Renewable and Sustainable Energy Reviews. 68(Part 1), 825–833. DOI: https://doi.org/10.1016/j.rser.2016.09.123
[29] Beckmann, A., Sivarajah, U., Irani, Z., 2021. Circular Economy Versus Planetary Limits: A Slovak Forestry Sector Case Study. Journal of Enterprise Information Management. 34(6), 1673–1698. DOI: https://doi.org/10.1108/JEIM-03-2020-0110
[30] Desmond, P., Asamba, M., 2019. Accelerating the Transition to a Circular Economy in Africa. In: Schröder, P., Anantharaman, M., Anggraeni, K., et al. (eds.). The Circular Economy and the Global South, 1st Edition. Routledge: London, UK. pp. 152–172. DOI: https://doi.org/10.4324/9780429434006-9
[31] Fernando, Y., Tseng, M.L., Aziz, N., et al., 2022. Waste-to-Energy Supply Chain Management on Circular Economy Capability: An Empirical Study. Sustainable Production and Consumption. 31, 26–38. DOI: https://doi.org/10.1016/j.spc.2022.01.032
[32] Bag, S., Yadav, G., Dhamija, P., et al., 2021. Key Resources for Industry 4.0 Adoption and Its Effect on Sustainable Production and Circular Economy: An Empirical Study. Journal of Cleaner Production. 281, 125233. DOI: https://doi.org/10.1016/j.jclepro.2020.125233
[33] Behera, B., Mari, S.S., Balasubramanian, P., 2022. Hydrothermal Processing of Microalgal Biomass: Circular Bio-Economy Perspectives for Addressing Food-Water-Energy Nexus. Bioresource Technology. 359, 127443. DOI: https://doi.org/10.1016/j.biortech.2022.127443
[34] Kululo, W.W., Habtu, N.G., Abera, M.K., et al., 2025. Advances in Various Pretreatment Strategies of Lignocellulosic Substrates for the Production of Bioethanol: A Comprehensive Review. Discover Applied Sciences. 7, 476. DOI: https://doi.org/10.1007/s42452-025-06748-1
[35] Simonyan, K.J., Fasina, O., 2013. Biomass Resources and Bioenergy Potentials in Nigeria. African Journal of Agricultural Research. 8(40), 4975–4989. DOI: https://doi.org/10.5897/AJAR2013.6726
[36] Kurniawan, S.B., Ahmad, A., Said, N.S.M., et al., 2021. Macrophytes as Wastewater Treatment Agents: Nutrient Uptake and Potential of Produced Biomass Utilization Toward Circular Economy Initiatives. Science of the Total Environment. 790, 148219. DOI: https://doi.org/10.1016/j.scitotenv.2021.148219
[37] Kalak, T., 2023. Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies. 16(4), 1782. DOI: https://doi.org/10.3390/en16041783
[38] Zhang, H., Xiao, R., Jin, B., et al., 2013. Catalytic Fast Pyrolysis of Straw Biomass in an Internally Interconnected Fluidized Bed to Produce Aromatics and Olefins: Effect of Different Catalysts. Bioresource Technology. 137, 82–87. DOI: https://doi.org/10.1016/j.biortech.2013.03.031
[39] Barnés, M.C., de Visser, M.M., van Rossum, G., et al., 2017. Liquefaction of Wood and Its Model Components. Journal of Analytical and Applied Pyrolysis. 125, 136–143. DOI: https://doi.org/10.1016/j.jaap.2017.04.008
[40] Kan, T., Strezov, V., Evans, T.J., 2016. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renewable and Sustainable Energy Reviews. 57, 1126–1140. DOI: https://doi.org/10.1016/j.rser.2015.12.185
[41] Cai, J., He, Y., Yu, X., et al., 2017. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renewable and Sustainable Energy Reviews. 76, 309–322. DOI: https://doi.org/10.1016/j.rser.2017.03.072
[42] Mohammed, Y.S., Mokhtar, A.S., Bashir, N., et al., 2013. An Overview of Agricultural Biomass for Decentralized Rural Energy in Ghana. Renewable and Sustainable Energy Reviews. 20, 15–25. DOI: https://doi.org/10.1016/j.rser.2012.11.047
[43] Batidzirai, B., Valk, M., Wicke, B., et al., 2016. Current and Future Technical, Economic and Environmental Feasibility of Maize and Wheat Residues Supply for Biomass Energy Application: Illustrated for South Africa. Biomass and Bioenergy. 92, 106–129. DOI: https://doi.org/10.1016/j.biombioe.2016.06.010
[44] Chang, K.H., Lou, K.R., Ko, C.H., 2019. Potential of Bioenergy Production From Biomass Wastes of Rice Paddies and Forest Sectors in Taiwan. Journal of Cleaner Production. 206, 460–476. DOI: https://doi.org/10.1016/j.jclepro.2018.09.048
[45] Ayamga, E.A., Kemausuor, F., Addo, A., 2015. Technical Analysis of Crop Residue Biomass Energy in an Agricultural Region of Ghana. Resources, Conservation and Recycling. 96, 51–60. DOI: https://doi.org/10.1016/j.resconrec.2015.01.007
[46] Marquina, J., Colinet, M.J., Pablo-Romero, M.P., 2021. The Economic Value of Olive Sector Biomass for Thermal and Electrical Uses in Andalusia (Spain). Renewable and Sustainable Energy. 148, 111278. DOI: https://doi.org/10.1016/j.rser.2021.111278
[47] Uzoagba, C., Bello, A., Kadivar, M., et al., 2024. Bioenergy Potential Assessment of Crop Residue Biomass Resources in Africa Towards Circular Economy. Cureus Journal of Engineering. 1(1), 1–24. DOI: https://doi.org/10.7759/s44388-024-00112-6
[48] Manzini, F., Islas-Samperio, J.M., Grande-Acosta, G.K., 2024. Exploring Corn Cob Gasification as a Low-Carbon Technology in the Corn Flour Industry in Mexico. Energies. 17(10), 2256. DOI: https://doi.org/10.3390/en17102256
[49] Same, N.N., Yakub, A.O., Chaulagain, D., et al., 2025. A Multicriteria Decision Analysis for the Selection and Ranking of Crop Residue for Sustainable Energy Generation in West Africa. Energy Nexus. 18, 100408. DOI: https://doi.org/10.1016/j.nexus.2025.100408
[50] Bildirici, M., Özaksoy, F., 2016. Woody Biomass Energy Consumption and Economic Growth in Sub-Saharan Africa. Procedia Economics and Finance. 38, 287–293. DOI: https://doi.org/10.1016/S2212-5671(16)30202-7
[51] Dasappa, S., 2011. Potential of Biomass Energy for Electricity Generation in Sub-Saharan Africa. Energy for Sustainable Development. 15(3), 203–213. DOI: https://doi.org/10.1016/j.esd.2011.07.006
[52] Manyele, S.V., 2007. Lifecycle Assessment of Biofuel Production From Wood Pyrolysis Technology. Educational Research Reviews. 2(6), 141–150.
[53] Salam, M.A., Ahmed, K., Akter, N., et al., 2018. A Review of Hydrogen Production via Biomass Gasification and Its Prospect in Bangladesh. International Journal of Hydrogen Energy. 43(32), 14944–14973. DOI: https://doi.org/10.1016/j.ijhydene.2018.06.043
[54] Schmer, M.R., Dose, H.L., 2014. Cob Biomass Supply for Combined Heat and Power and Biofuel in the North-Central USA. Biomass and Bioenergy. 64, 321–328. DOI: https://doi.org/10.1016/j.biombioe.2014.03.051
[55] Barry, F., Sawadogo, M., Ouédraogo, I.W.K., et al., 2022. Geographical and Economic Assessment of Feedstock Availability for Biomass Gasification in Burkina Faso. Energy Conversion and Management: X. 13, 100163. DOI: https://doi.org/10.1016/j.ecmx.2021.100163
[56] Olupot, P.W., Candia, A., Menya, E., et al., 2016. Characterization of Rice Husk Varieties in Uganda for Biofuels and Their Techno-Economic Feasibility in Gasification. Chemical Engineering Research and Design. 107, 63–72. DOI: https://doi.org/10.1016/j.cherd.2015.11.010
[57] Chipfupa, U., Tagwi, A., 2024. Greenhouse Gas Emission Implications of Small-Scale Sugarcane Farmers' Trash Management Practices: A Case for Bioenergy Production in South Africa. Energy Nexus. 15, 100308. DOI: https://doi.org/10.1016/j.nexus.2024.100308
[58] Rincón, L.E., Becerra, L.A., Moncada, J., et al., 2014. Techno-Economic Analysis of the Use of Fired Cogeneration Systems Based on Sugar Cane Bagasse in South Eastern and Mid-Western Regions of Mexico. Waste and Biomass Valorization. 5, 189–198. DOI: https://doi.org/10.1007/s12649-013-9224-0
[59] Antoniou, N., Monlau, F., Sambusiti, C., et al., 2019. Contribution to Circular Economy Options of Mixed Agricultural Wastes Management: Coupling Anaerobic Digestion With Gasification for Enhanced Energy and Material Recovery. Journal of Cleaner Production. 209, 505–514. DOI: https://doi.org/10.1016/j.jclepro.2018.10.055
[60] Okello, C., Pindozzi, S., Faugno, S., et al., 2013. Bioenergy Potential of Agricultural and Forest Residues in Uganda. Biomass and Bioenergy. 56, 515–525. DOI: https://doi.org/10.1016/j.biombioe.2013.06.003
[61] Khalil, M., Berawi, M.A., Heryanto, R., et al., 2019. Waste to Energy Technology: The Potential of Sustainable Biogas Production From Animal Waste in Indonesia. Renewable and Sustainable Energy Reviews. 105, 323–331. DOI: https://doi.org/10.1016/j.rser.2019.02.011
[62] Mwakitalima, I.J., Rizwan, M., Kumar, N., 2023. Integrating Solar Photovoltaic Power Source and Biogas Energy-Based System for Increasing Access to Electricity in Rural Areas of Tanzania. International Journal of Photoenergy. 2023(1), 7950699. DOI: https://doi.org/10.1155/2023/7950699
[63] Deng, X., Li, Y., Fei, X., 2009. Microalgae: A Promising Feedstock for Biodiesel. African Journal of Microbiology Research. 3(13), 1008–1014.
[64] Goh, B.H.H., Ong, H.C., Cheah, M.Y., et al., 2019. Sustainability of Direct Biodiesel Synthesis From Microalgae Biomass: A Critical Review. Renewable and Sustainable Energy Reviews. 107, 59–74. DOI: https://doi.org/10.1016/j.rser.2019.02.012
[65] Duku, M.H., Gu, S., Hagan, E.B., 2011. A Comprehensive Review of Biomass Resources and Biofuels Potential in Ghana. Renewable and Sustainable Energy Reviews. 15(1), 404–415. DOI: https://doi.org/10.1016/j.rser.2010.09.033
[66] Medipally, S.R., Yusoff, F., Banerjee, S., et al., 2015. Feedstock for Biofuel Production. Hindawi. 2015(1), 519513. DOI: https://doi.org/10.1155/2015/519513
[67] Szulczyk, K.R., Tan, Y.M., 2022. Economic Feasibility and Sustainability of Commercial Bioethanol From Microalgal Biomass: The Case of Malaysia. Energy. 253, 124151. DOI: https://doi.org/10.1016/j.energy.2022.124151
[68] Al-Iwayzy, S.H., Yusaf, T., Al-Juboori, R.A., 2014. Biofuels From the Freshwater Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines. Energies. 7(3), 1829–1851. DOI: https://doi.org/10.3390/en7031829
[69] Thirugnanasambantham, R., Elango, T., Elangovan, K., 2020. Chlorella vulgaris sp. Microalgae as a Feedstock for Biofuel. Materials Today: Proceedings. 33(Part 7), 3182–3185. DOI: https://doi.org/10.1016/j.matpr.2020.04.106
[70] Sahoo, G., Sharma, A., Dash, A.C., 2022. Biomass From Trees for Bioenergy and Biofuels - A Briefing Paper. Materials Today: Proceedings. 65, 461–467. DOI: https://doi.org/10.1016/j.matpr.2022.02.639
[71] Suh, D.H., 2016. Interfuel Substitution and Biomass Use in the U.S. Industrial Sector: A Differential Approach. Energy. 102, 24–30. DOI: https://doi.org/10.1016/j.energy.2016.02.012
[72] Sansaniwal, S.K., Rosen, M.A., Tyagi, S.K., 2017. Global Challenges in the Sustainable Development of Biomass Gasification: An Overview. Renewable and Sustainable Energy Reviews. 80, 23–43. DOI: https://doi.org/10.1016/j.rser.2017.05.215
[73] Vijay, V., Kapoor, R., Singh, P., et al., 2022. Sustainable Utilization of Biomass Resources for Decentralized Energy Generation and Climate Change Mitigation: A Regional Case Study in India. Environmental Research. 212(Part B), 113257. DOI: https://doi.org/10.1016/j.envres.2022.113257
[74] Mirmoshtaghi, G., Skvaril, J., Campana, P.E., et al., 2016. The Influence of Different Parameters on Biomass Gasification in Circulating Fluidized Bed Gasifiers. Energy Conversion and Management. 126, 110–123. DOI: https://doi.org/10.1016/j.enconman.2016.07.031
[75] Adeleke, A.A., Ikubanni, P.P., Orhadahwe, T.A., et al., 2021. Sustainability of Multifaceted Usage of Biomass: A Review. Heliyon. 7(9), e08025. DOI: https://doi.org/10.1016/j.heliyon.2021.e08025
[76] Rodionova, M.V., Poudyal, R.S., Tiwari, I., et al., 2017. Biofuel Production: Challenges and Opportunities. International Journal of Hydrogen Energy. 42(12), 8450–8461. DOI: https://doi.org/10.1016/j.ijhydene.2016.11.125
[77] Abdelrazik, M.K., Abdelaziz, S.E., Hassan, M.F., et al., 2022. Climate Action: Prospects of Solar Energy in Africa. Energy Reports. 8, 11363–11377. DOI: https://doi.org/10.1016/j.egyr.2022.08.252
[78] Abioye, K.J., Rajamanickam, R., Ogunjinmi, T., et al., 2025. Advancements in Biomass Waste Conversion to Sustainable Biofuels via Gasification. Chemical Engineering Journal. 505, 159151. DOI: https://doi.org/10.1016/j.cej.2024.159151
[79] Obeng, G.Y., Mensah, E., Ashiagbor, G., et al., 2017. Watching the Smoke Rise Up: Thermal Efficiency, Pollutant Emissions and Global Warming Impact of Three Biomass Cookstoves in Ghana. Energies. 10(5), 641. DOI: https://doi.org/10.3390/en10050641
[80] Owusu, P.A., Asumadu-Sarkodie, S., 2016. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Engineering. 3(1), 1167990. DOI: https://doi.org/10.1080/23311916.2016.1167990
[81] Kelly, M., Radler, R.D.N.N., 2024. Does Energy Consumption Matter for Climate Change in Africa? New Insights From Panel Data Analysis. Innovation and Green Development. 3(3), 100132. DOI: https://doi.org/10.1016/j.igd.2024.100132
[82] Röder, M., Chong, K., Thornley, P., 2022. The Future of Residue-Based Bioenergy for Industrial Use in Sub-Saharan Africa. Biomass and Bioenergy. 159, 106385. DOI: https://doi.org/10.1016/j.biombioe.2022.106385
[83] Arndt, C., Henley, G., Hartley, F., 2019. Bioenergy in Southern Africa: An Opportunity for Regional Integration? Development Southern Africa. 36(2), 145–154. DOI: https://doi.org/10.1080/0376835X.2018.1447363
[84] Benti, N.E., Gurmesa, G.S., Argaw, T., et al., 2021. The Current Status, Challenges and Prospects of Using Biomass Energy in Ethiopia. Biotechnology for Biofuels. 14, 209. DOI: https://doi.org/10.1186/s13068-021-02060-3
[85] Nunes, L.J.R., Matias, J.C.O., Loureiro, L.M.E.F., et al., 2021. Evaluation of the Potential of Agricultural Waste Recovery: Energy Densification as a Factor for Residual Biomass Logistics Optimization. Applied Sciences. 11(1), 20. DOI: https://doi.org/10.3390/app11010020
[86] Chen, W.H., Lin, B.J., Lin, Y.Y., et al., 2021. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Progress in Energy and Combustion Science. 82, 100887. DOI: https://doi.org/10.1016/j.pecs.2020.100887
[87] Tumuluru, J.S., Ghiasi, B., Soelberg, N.R., et al., 2021. Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Frontiers in Energy Research. 9, 728140. DOI: https://doi.org/10.3389/fenrg.2021.728140
[88] Lange, L., Connor, K.O., Arason, S., et al., 2021. Developing a Sustainable and Circular Bio-Based Economy in EU: By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment & Biodiversity, and People & Business. Frontiers in Bioengineering and Biotechnology. 8, 619066. DOI: https://doi.org/10.3389/fbioe.2020.619066
[89] Uddin, N., Taplin, R., 2015. Regional Cooperation in Widening Energy Access and Also Mitigating Climate Change: Current Programs and Future Potential. Global Environmental Change. 35, 497–504. DOI: https://doi.org/10.1016/j.gloenvcha.2015.05.006
[90] Sala, P., Schure, J., Gambo, J., et al., 2021. Cross-Border Charcoal Trade in Selected East, Central and Southern African Countries: A Call for Regional Dialogue. CIFOR‑ICRAF (Center for International Forestry Research and World Agroforestry): Bogor, Indonesia and Nairobi, Kenya.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Azwifunimunwe Tshikovhi, Mokgaotsa. J. Mochane, Pauline Ncube, Tshwafo E. Motaung

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.