
Challenges in Sustainable Forest Ecosystems: Interconnections Between Climate Change and Forest Diseases: A Systematic Review
DOI:
https://doi.org/10.30564/jees.v7i8.10860Abstract
Climate change has profoundly affected forests worldwide, contributing to increased pathogen invasions and the proliferation of forest diseases. This article presents a systematic review that investigates the intricate relationship between climate change and the prevalence of forest diseases. The study identifies climate-related factors that drive the rising incidence of these diseases. Following the PRISMA guidelines, 77 studies were selected and analyzed from a pool of 3,510 articles, focusing on their spatial and temporal patterns, contextual drivers, and linkages to climate change. The findings underscore the critical role of extended drought periods and rising temperatures as key factors exacerbating forest disease outbreaks. This review highlights the pressing need for sustainable forest management practices to counteract the adverse impacts of climate change on forest ecosystems. By identifying critical climate drivers and ecological vulnerabilities, this research provides a foundation for adaptive silviculture and pathogen management strategies.
Keywords:
Forest Health; Governance; Climate Change; Forest Disease Variability; Sustainable Forest; Forest Degradation; Systematic Literature ReviewReferences
[1] Malhi, Y., Franklin, J., Seddon, N., et al., 2019. Climate Change and Ecosystems: Threats, Opportunities, and Solutions. Philosophical Transactions of the Royal Society B. 375, 20190104. DOI: https://doi.org/10.1098/rstb.2019.0104
[2] Swanston, C., Brandt, L.A., Janowiak, M.K., et al., 2018. Vulnerability of Forests of the Midwest and Northeast United States to Climate Change. Climatic Change. 146, 103–116. DOI: https://doi.org/10.1007/s10584-017-2065-2
[3] Healey, M.A., Warman, R., Mohammed, C., et al., 2023. Acacia and Eucalypt Plantation Biosecurity in Southeast Asia—A History, and Directions for Future Research and Engagement. Australian Forestry. 85, 146–160. DOI: https://doi.org/10.1080/00049158.2022.2145721
[4] Appiagyei, B.D., Belhoucine-Guezouguli, L., Bessah, E., et al., 2022. A Review on Climate Change Impacts on Forest Ecosystem Services in the Mediterranean Basin. Journal of Landscape Ecology. 15(1), 1–26. DOI: https://doi.org/10.2478/jlecol-2022-0001
[5] Intergovernmental Panel on Climate Change (IPCC), 2023. Climate Change 2023: Synthesis Report. Intergovernmental Panel on Climate Change: Geneva, Switzerland.
[6] Sturrock, R.N., Frankel, S.J., Brown, A.V., et al., 2011. Climate Change and Forest Diseases. Plant Pathology. 60, 133–149. DOI: https://doi.org/10.1111/j.1365-3059.2010.02406.x
[7] Alamgir, M., Turton, S.M., Macgregor, C.J., et al., 2016. Assessing Regulating and Provisioning Ecosystem Services in a Contrasting Tropical Forest Landscape. Ecological Indicators. 64, 319–334. DOI: https://doi.org/10.1016/j.ecolind.2016.01.016
[8] Brockerhoff, E.G., Barbaro, L., Castagneyrol, B., et al., 2017. Forest Biodiversity, Ecosystem Functioning, and the Provision of Ecosystem Services. Biodiversity and Conservation. 26, 3005–3035. DOI: https://doi.org/10.1007/s10531-017-1453-2
[9] Austin, K. G., Favero, A., Forsell, N., Sohngen, B. L., Wade, C. M., Ohrel, S. B., Ragnauth, S., et al., 2025. Targeting climate finance for global forests. Nature Communications, 16(1), 6443.
[10] Zhu, L., Hughes, A.C., Zhao, X.Q., et al., 2021. Regional Scalable Priorities for National Biodiversity and Carbon Conservation Planning in Asia. Science Advances. 7(35), eabc1234. DOI: https://doi.org/10.1126/sciadv.abe4261
[11] Hisano, M., Searle, E. B., & Chen, H. Y., et al., 2018.. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews, 93(1), 439-456.
[12] Watson, J.E.M., Evans, T., Venter, O., et al., 2018. The Exceptional Value of Intact Forest Ecosystems. Nature Ecology and Evolution. 2, 599–610. DOI: https://doi.org/10.1038/s41559-018-0490-x
[13] Linnakoski, R., Kasanen, R., Dounavi, A., et al., 2019. Forest Health under Climate Change: Effects on Tree Resilience, and Pest and Pathogen Dynamics. Frontiers in Plant Science. 10, 1157. DOI: https://doi.org/10.3389/fpls.2019.01157
[14] Seidl, R., Thom, D., Kautz, M., et al., 2017. Forest Disturbances under Climate Change. Nature Climate Change. 7, 395–402. DOI: https://doi.org/10.1038/nclimate3303
[15] Singh, B.K., Delgado-Baquerizo, M., Egidi, E., et al., 2023. Climate Change Impacts on Plant Pathogens, Food Security, and Paths Forward. Nature Reviews Microbiology. 21, 640–656. DOI: https://doi.org/10.1038/s41579-023-00900-7
[16] Song, X.P., Hansen, M.C., Stehman, S.V., et al., 2018. Global Land Change from 1982 to 2016. Nature. 560, 639–643. DOI: https://doi.org/10.1038/s41586-018-0411-9
[17] Carrasco, G., Almeida, A.C., Falvey, M., et al., 2022. Effects of Climate Change on Forest Plantation Productivity in Chile. Global Change Biology. 28, 7391–7409. DOI: https://doi.org/10.1111/gcb.16418
[18] An, H., Lee, S., Cho, S.J., 2019. The Effects of Climate Change on Pine Wilt Disease in South Korea: Challenges and Prospects. Forests. 10(6), 486. DOI: https://doi.org/10.3390/f10060486
[19] Tang, X., Yuan, Y., Li, X., et al., 2021. Maximum Entropy Modeling to Predict the Impact of Climate Change on Pine Wilt Disease in China. Frontiers in Plant Science. 12, 652500. DOI: https://doi.org/10.3389/fpls.2021.652500
[20] Oldekop, J.A., Rasmussen, L.V., Agrawal, A., et al., 2020. Forest-Linked Livelihoods in a Globalized World. Nature Plants. 6, 1400–1407. DOI: https://doi.org/10.1038/s41477-020-00814-9
[21] Page, M.J., McKenzie, J.E., Bossuyt, P.M., et al., 2021. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ. 372, 71. DOI: https://doi.org/10.1136/bmj.n71
[22] Moher, D., Liberati, A., Tetzlaff, J., et al., 2009. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ. 339, b2535. DOI: https://doi.org/10.1136/bmj.b2535
[23] Siti-Dina, R.P., Er, A.C., Cheah, W.Y., 2023. Social Issues and Challenges among Oil Palm Smallholder Farmers in Malaysia: Systematic Literature Review. Sustainability. 15(4), 3123. DOI: https://doi.org/10.3390/su15043123
[24] Mjaika, N.E., 2022. A Systematic Review of Biodiversity and Conservation of Indigenous Mushrooms (Basidiomycotina, Ascomycotina) of Central Africa Countryside: Uses, Distribution and Checklists. Research in Ecology. 4, 56–66. DOI: https://doi.org/10.30564/re.v4i2.4746
[25] Sahani, A.K., Gupta, G., Anand, S., et al., 2025. Indigenous Knowledge and Water Conservation Practices in South Africa: A Systematic Literature Review. Journal of Environmental and Earth Sciences. 7(2), 1–15. DOI: https://doi.org/10.30564/jees.v7i2.7988
[26] Abas, A., 2023. A Systematic Literature Review on the Forest Health Biomonitoring Technique: A Decade of Practice, Progress, and Challenge. Frontiers in Environmental Science. 11, 64. DOI: https://doi.org/10.3389/fenvs.2023.970730
[27] Nishikawa-Pacher, A., 2022. Research Questions with PICO: A Universal Mnemonic. Publications. 10(3), 21. DOI: https://doi.org/10.3390/publications10030021
[28] Petticrew, M., Roberts, H., 2006. Systematic Reviews in the Social Sciences: A Practical Guide. John Wiley & Sons: Chichester, UK.
[29] Braun, V., Clarke, V., 2006. Using Thematic Analysis in Psychology. Qualitative Research in Psychology. 3(2), 77–101. DOI: https://doi.org/10.1191/1478088706qp063oa
[30] Ika, L.A., Locatelli, G., Drouin, N., 2024. Policy-Driven Projects: Empowering the World to Confront Grand Challenges. European Management Journal. 42(6), 835–842. DOI: https://doi.org/10.1016/j.emj.2024.09.001
[31] Añazco, D., Nicolalde, B., Espinosa, I., et al., 2021. Publication Rate and Citation Counts for Preprints Released During the COVID-19 Pandemic: The Good, the Bad, and the Ugly. PeerJ. 9, e10927. DOI: https://doi.org/10.7717/peerj.10927
[32] Aviv-Reuven, S., Rosenfeld, A., 2021. Publication Patterns’ Changes Due to the COVID-19 Pandemic: A Longitudinal and Short-Term Scientometric Analysis. Scientometrics. 126, 6761–6784. DOI: https://doi.org/10.1007/s11192-021-04059-x
[33] Fassnacht, F.E., White, J.C., Wulder, M.A., et al., 2024. Remote Sensing in Forestry: Current Challenges, Considerations and Directions. Forestry. 97, 11–37. DOI: https://doi.org/10.1093/forestry/cpad024
[34] Yuan, B.Z., Sun, J., 2021. Research Trend and Status of Forestry Based on Essential Science Indicators During 2010–2020: A Bibliometric Analysis. Applied Ecology and Environmental Research. 19(6), 651–671. DOI: http://dx.doi.org/10.15666/aeer/1906_49414957
[35] Huang, M.H., Huang, M.J., 2018. An Analysis of Global Research Funding from Subject Field and Funding Agencies Perspectives in the G9 Countries. Scientometrics. 115, 833–847. DOI: https://doi.org/10.1007/s11192-018-2677-y
[36] Eitzel, M.V., Sarna-Wojcicki, D., Hogan, S., et al., 2024. Using Mixed-Method Analytical Historical Ecology to Map Land Use and Land Cover Change for Ecocultural Restoration in the Klamath River Basin (Northern California). Ecological Informatics. 81, 102552. DOI: https://doi.org/10.1016/j.ecoinf.2024.102552
[37] Ghelardini, L., Luchi, N., Pecori, F., et al., 2017. Ecology of Invasive Forest Pathogens. Biological Invasions. 19, 3183–3200. DOI: https://doi.org/10.1007/s10530-017-1487-0
[38] Ashu, E.E., Xu, J., 2015. The Roles of Sexual and Asexual Reproduction in the Origin and Dissemination of Strains Causing Fungal Infectious Disease Outbreaks. Infection, Genetics and Evolution. 36, 199–209. DOI: https://doi.org/10.1016/j.meegid.2015.09.019
[39] Engering, A., Hogerwerf, L., Slingenbergh, J., 2013. Pathogen–Host–Environment Interplay and Disease Emergence. Emerging Microbes & Infections. 2(1), 1–7. DOI: https://doi.org/10.1038/emi.2013.5
[40] Dai, A., 2013. Increasing Drought under Global Warming in Observations and Models. Nature Climate Change. 3, 52–58. DOI: https://doi.org/10.1038/nclimate1633
[41] Vicente-Serrano, S.M., Camarero, J.J., Azorín-Molina, C., 2014. Diverse Responses of Forest Growth to Drought Timescales in the Northern Hemisphere. Global Ecology and Biogeography. 23(9), 1019–1030. DOI: https://doi.org/10.1111/geb.12183
[42] Chen, L., Huang, J.G., Dawson, A., et al., 2018. Contributions of Insects and Droughts to Growth Decline of Trembling Aspen Mixed Boreal Forest of Western Canada. Global Change Biology. 24(2), 655–667. DOI: https://doi.org/10.1111/gcb.13855
[43] Azimi, P., Safaie, N., Zamani, S.M., et al., 2023. Climate-Induced Vegetation Dynamics Associated with the Prevalence of Charcoal Oak Disease in Zagros Forests. Industrial Crops and Products. 200, 116885. DOI: https://doi.org/10.1016/j.indcrop.2023.116885
[44] Burgdorf, N., Härtl, L., Hahn, W.A., 2022. Sooty Bark Disease in Sycamore: Seasonal and Vertical Variation in Spore Release of Cryptostroma corticale. Forests. 13(11), 1956. DOI: https://doi.org/10.3390/f13111956
[45] McNellis, B.E., Smith, A.M., Hudak, A.T., et al., 2021. Tree Mortality in Western US Forests Forecasted Using Forest Inventory and Random Forest Classification. Ecosphere. 12(3), e03476. DOI: https://doi.org/10.1002/ecs2.3419
[46] Moreno-Fernández, D., Viana-Soto, A., Camarero, J.J.,et al., 2021. Using Spectral Indices as Early Warning Signals of Forest Dieback: The Case of Drought-Prone Pinus pinaster Forests. Science of the Total Environment. 793, 148578. DOI: https://doi.org/10.1016/j.scitotenv.2021.148578
[47] Camarero, J.J., Sánchez-Salguero, R., Sangüesa-Barreda, G., et al., 2021. Drought, Axe, and Goats: More Variable and Synchronized Growth Forecasts Worsening Dieback in Moroccan Atlas Cedar Forests. Science of the Total Environment. 765, 142752. DOI: https://doi.org/10.1016/j.scitotenv.2020.142752
[48] Gea-Izquierdo, G., Natalini, F., Cardillo, E., 2021. Holm Oak Death Is Accelerated but Not Sudden and Expresses Drought Legacies. Science of the Total Environment. 754, 141793. DOI: https://doi.org/10.1016/j.scitotenv.2020.141793
[49] Lalande, B.M., Hughes, K., Jacobi, W.R., et al., 2020. Subalpine Fir Mortality in Colorado Is Associated with Stand Density, Warming Climates, and Interactions Among Fungal Diseases and the Western Balsam Bark Beetle. Forest Ecology and Management. 466, 118133. DOI: https://doi.org/10.1016/j.foreco.2020.118133
[50] Patejuk, K., Baturo-Cieśniewska, A., Pusz, W., et al., 2022. Biscogniauxia Charcoal Canker—A New Potential Threat for Mid-European Forests as an Effect of Climate Change. Forests. 13(1), 89. DOI: https://doi.org/10.3390/f13010089
[51] Gazol, A., Camarero, J.J., Anderegg, W.R.L., et al., 2017. Impacts of Droughts on the Growth Resilience of Northern Hemisphere Forests. Global Ecology and Biogeography. 26(2), 166–176. DOI: https://doi.org/10.1111/geb.12526
[52] Pardos, M., Del Río, M., Pretzsch, H., et al., 2021. The Greater Resilience of Mixed Forests to Drought Mainly Depends on Their Composition: Analysis Along a Climate Gradient Across Europe. Forest Ecology and Management. 481, 118687. DOI: https://doi.org/10.1016/j.foreco.2020.118687
[53] Feng, W., Lu, H., Yao, T., et al., 2020. Drought Characteristics and Its Elevation Dependence in the Qinghai–Tibet Plateau During the Last Half-Century. Scientific Reports. 10, 14323. DOI: https://doi.org/10.1038/s41598-020-71295-1
[54] Bennett, A.C., McDowell, N.G., Allen, C.D., et al., 2015. Larger Trees Suffer Most During Drought in Forests Worldwide. Nature Plants. 1, 15139. DOI: https://doi.org/10.1038/nplants.2015.139
[55] Nolan, R. H., Collins, L., Leigh, A., et al., 2021. Limits to post‐fire vegetation recovery under climate change. Plant, cell & environment, 44(11), 3471-3489.
[56] Poelle, A., Chen, S.L., Eckert, C., et al., 2019. Engineering Drought Resistance in Forest Trees. Frontiers in Plant Science. 9, 1875. DOI: https://doi.org/10.3389/fpls.2018.01875
[57] Liu, M., Trugman, A.T., Peñuelas, J., et al., 2024. Climate-Driven Disturbances Amplify Forest Drought Sensitivity. Nature Climate Change. 14, 746–752. DOI: https://doi.org/10.1038/s41558-024-02022-1
[58] Morcillo, L., Gallego, D., González, E., et al., 2019. Forest Decline Triggered by Phloem Parasitism-Related Biotic Factors in Aleppo Pine (Pinus halepensis). Forests. 10(8), 608. DOI: https://doi.org/10.3390/f10080608
[59] Firmino, P.N., Calvao, T., Ayres, M.P., et al., 2017. Monochamus galloprovincialis and Bursaphelenchus xylophilus Life History in an Area Severely Affected by Pine Wilt Disease: Implications for Forest Management. Forest Ecology and Management. 389, 105–115. DOI: https://doi.org/10.1016/j.foreco.2016.12.027
[60] Pimentel, C.S., Ayres, M.P., 2018. Latitudinal Patterns in Temperature-Dependent Growth Rates of a Forest Pathogen. Journal of Thermal Biology. 72, 39–43. DOI: https://doi.org/10.1016/j.jtherbio.2017.11.018
[61] Calvão, T., Duarte, C.M., Pimentel, C.S., et al., 2019. Climate and Landscape Patterns of Pine Forest Decline After Invasion by the Pinewood Nematode. Forest Ecology and Management. 433, 43–51. DOI: https://doi.org/10.1016/j.foreco.2018.10.039
[62] Gao, R., Wang, Z., Wang, H., et al., 2019. Relationship Between Pine Wilt Disease Outbreaks and Climatic Variables in the Three Gorges Reservoir Region. Forests. 10(9), 816. DOI: https://doi.org/10.3390/f10090816
[63] Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., et al., 2017. Tree Mortality Across Biomes Is Promoted by Drought Intensity, Lower Wood Density, and Higher Specific Leaf Area. Ecology Letters. 20, 539–553. DOI: https://doi.org/10.1111/ele.12748
[64] Camarero, J. J., Gazol, A., Sangüesa‐Barreda, G., et al., 2015. To Die or Not to Die: Early Warnings of Tree Dieback in Response to a Severe Drought. Journal of Ecology. 103(1), 44–57. DOI: https://doi.org/10.1111/1365-2745.12295
[65] Quesada, T., Lucas, S., Smith, K., et al., 2019. Response to Temperature and Virulence Assessment of Fusarium circinatum Isolates in the Context of Climate Change. Forests. 10(1), 40. DOI: https://doi.org/10.3390/f10010040
[66] Gely, C., Laurance, S.G., Stork, N.E., 2020. How Do Herbivorous Insects Respond to Drought Stress in Trees? Biological Reviews. 95, 434–448. DOI: https://doi.org/10.1111/brv.12571
[67] Sánchez-Agudo, J.Á., Hernández-Lambraño, R.E., Tellería, J.L., 2024. Less Suitable Climatic Conditions and Pests Increase Tree Defoliation in the Spanish Iberian Peninsula. Forest Ecology and Management. 566, 122048. DOI: https://doi.org/10.1016/j.foreco.2024.122048
[68] Hessenauer, P., Feau, N., Gill, U., et al., 2021. Evolution and Adaptation of Forest and Crop Pathogens in the Anthropocene. Phytopathology. 111, 49–67. DOI: https://doi.org/10.1094/PHYTO-08-20-0358-FI
[69] Agne, M.C., Beedlow, P.A., Shaw, D.C., et al., 2018. Interactions of Predominant Insects and Diseases with Climate Change in Douglas-Fir Forests of Western Oregon and Washington, USA. Forest Ecology and Management. 409, 317–332. DOI: https://doi.org/10.1016/j.foreco.2017.11.004
[70] Oliva, J., Redondo, M.Á., Stenlid, J. (2020). Functional Ecology of Forest Disease. Annual review of Phytopathology. 58(1), 343–361. DOI: https://doi.org/10.1146/annurev-phyto-080417-050028
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Ahmad Syihan Mat Udin, Siti Dina Razman Pahri, Mohd Farid Ahmad, Ahmad Syazwan Samsuddin, Azlan Abas

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.