
Thermodynamic Models of the Fluid H2O-CO2-NaCl-CaCl2 and Its Ternary Subsystems for Temperatures of 150–350 °C and Pressures of 0.2–1.4 kbar
DOI:
https://doi.org/10.30564/jees.v7i10.11540Abstract
Numerical thermodynamic models are proposed for the quaternary fluid system H2O-CO2-NaCl-CaCl2 and its ternary subsystems H2O-NaCl-CaCl2, H2O-CO2-NaCl, and H2O-CO2-CaCl2. The models are valid for temperatures from 150 °C to 350 °C, pressures from 0.2 to 1.4 kbar, and for arbitrary concentrations of salts. The latter feature is inherited from the earlier developed models of binary systems H2O-NaCl and H2O-CaCl2. All the models are formulated in terms of the Gibbs free energy. The entropy term in the equation for the Gibbs free energy of mixing is introduced in a general form, based on the number of different ways of arranging particles in the system that lead to the same total energy. The parameters of the energy terms corresponding to the interactions of particles in binary and ternary subsystems are obtained by fitting published experimental data. The concentrations of salts in the gas phase are simulated based on the salt evaporation free energy. Our model, also available as a computer code, makes it possible to predict the physicochemical properties of fluids involved in hydrothermal processes in the upper crust: the phase state of the system (homogeneous or two-phase fluid), activities of the components, densities, and compositions of the (coexisting) fluid phases. The model offers a numerical tool for analyzing fluid inclusion data and better understanding of metamorphic and metasomatic processes in the upper crust. Fluids at studied P-T conditions play a decisive role in the formation of hydrothermal ore deposits, including most of the world's gold deposits.
Keywords:
High Pressure; Elevated Temperature; Equation of State; Water-Carbon Dioxide Fluid; Phase Splitting; Upper Crust; NaCl; CaCl2References
[1] Williams-Jones, A.E., Heinrich, C.A., 2005. Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology. 100(7), 1287–1312. DOI: https://doi.org/10.2113/gsecongeo.100.7.1287
[2] Heinrich, W., 2007. Fluid Immiscibility in Metamorphic Rocks. Reviews in Mineralogy and Geochemistry. 65(1), 389–430. DOI: https://doi.org/10.2138/rmg.2007.65.12
[3] Fu, B., Touret, J.L.R., 2014. From Granulite Fluids to Quartz-Carbonate Megashear Zones: The Gold Rush. Geoscience Frontiers. 5(5), 747–758. DOI: https://doi.org/10.1016/j.gsf.2014.03.013
[4] Li, Y., Ngheim, L.X., 1986. Phase Equilibria of Oil, Gas and Water/Brine Mixtures from a Cubic Equation of State and Henry’s Law. Canadian Journal of Chemical Engineering. 64(3), 486–496. DOI: https://doi.org/10.1002/cjce.5450640319
[5] Duan, Z., Sun, R., 2003. An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions from 273 to 533 K and from 0 to 2000 Bar. Chemical Geology. 193(3–4), 257–271. DOI: https://doi.org/10.1016/S0009-2541(02)00263-2
[6] Papaiconomou, N., Simonin, J.P., Bernard, O., et al., 2003. Description of Vapor-Liquid Equilibria for CO2 in Electrolyte Solutions Using the Mean Spherical Approximation. The Journal of Physical Chemistry B. 107(24), 5948–5957. DOI: https://doi.org/10.1021/jp034294x
[7] Spycher, N., Pruess, K., 2005. CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12–100°C and up to 600 Bar. Geochimica et Cosmochimica Acta. 69(13), 3309–3320. DOI: https://doi.org/10.1016/j.gca.2005.01.015
[8] Duan, Z., Hu, J., Li, D., et al., 2008. Densities of the CO2-H2O and CO2-H2O-NaCl Systems up to 647 K and 100 MPa. Energy and Fuels. 22(3), 1666–1674. DOI: https://doi.org/10.1021/ef700666b
[9] Akinfiev, N.N., Diamond, L.W., 2010. Thermodynamic Model of Aqueous CO2-H2O-NaCl Solutions from –22 to 100°C and from 0.1 to 100 MPa. Fluid Phase Equilibria. 295(1), 104–124. DOI: https://doi.org/10.1016/j.fluid.2010.04.007
[10] Sun, R., Dubessy, J., 2012. Prediction of Vapor-Liquid Equilibrium and PVTx Properties of Geological Fluid System with SAFT-LJ EOS Including Multi-Polar Contribution. Part II: Application to H2O-NaCl and H2O-CO2-NaCl System. Geochimica et Cosmochimica Acta. 88(1), 130–145. DOI: https://doi.org/10.1016/j.gca.2012.04.025
[11] Dubacq, B., Bickle, M.J., Evans, K.A., 2013. An Activity Model for Phase Equilibria in the H2O-CO2-NaCl System. Geochimica et Cosmochimica Acta. 110, 229–252. DOI: https://doi.org/10.1016/j.gca.2013.02.008
[12] Mao, S., Hu, J., Zhang, Y., et al., 2015. A Predictive Model for the PVTx Properties of CO2-H2O-NaCl Fluid Mixture up to High Temperature and High Pressure. Applied Geochemistry. 54, 54–64. DOI: https://doi.org/10.1016/j.apgeochem.2015.01.003
[13] Bain, X.Q., Xiong, W., Kasthuriarchchi, D.T.K., et al., 2019. Phase Equilibrium Modeling for Carbon Dioxide Solubility in Aqueous Sodium Chloride Solutions Using an Association Equation of State. Industrial and Engineering Chemistry Research. 58(24), 10570–10578. DOI: https://doi.org/10.1021/acs.iecr.9b01736
[14] Pitzer, K.S., Peiper, J.C., Busey, R.H., 1984. Thermodynamic Properties of Aqueous Sodium Chloride Solutions. Journal of Physical and Chemical Reference Data. 13, 1–102. DOI: https://doi.org/10.1063/1.555709
[15] Archer, D.G., 1992. Thermodynamic Properties of the NaCl+H2O System. II. Thermodynamic Properties of NaCl(aq), NaCl·2H2(cr), and Phase Equilibria. Journal of Physical and Chemical Reference Data. 21, 793–829. DOI: https://doi.org/10.1063/1.555915
[16] Ivanov, M.V., Bushmin, S.A., Aranovich, L.Y., 2018. An Empirical Model of the Gibbs Free Energy for Solutions of NaCl and CaCl2 of Arbitrary Concentration at Temperatures from 423.15 K to 623.15 K under Vapor Saturation Pressure. Doklady Earth Sciences. 479, 491–494. DOI: https://doi.org/10.1134/S1028334X18040141
[17] Zhang, Y.G., Frantz, J.D., 1989. Experimental Determination of the Compositional Limits of Immiscibility in the System CaCl2-H2O-CO2 at High Temperatures and Pressures Using Synthetic Fluid Inclusions. Chemical Geology. 74(3–4), 289–308. DOI: https://doi.org/10.1016/0009-2541(89)90039-9
[18] Shmulovich, K.I., Plyasunova, N.V., 1993. High-Temperature High-Pressure Phase Equilibria in the Ternary System H2O-CO2-Salt (CaCl2, NaCl). Geokhimia. 5, 666–684.
[19] Shmulovich, K.I., Graham, C.M., 2004. An Experimental Study of Phase Equilibria in the Systems H2O–CO2–CaCl2 and H2O–O2–NaCl at High Pressures and Temperatures (500–800°C, 0.5–0.9 GPa): Geological and Geophysical Applications. Contributions to Mineralogy and Petrology. 146, 450–462. DOI: https://doi.org/10.1007/s00410-003-0507-5
[20] Ivanov, M.V., Bushmin, S.A., 2019. Equation of State of the Fluid System H2O-CO2-CaCl2 and Properties of Fluid Phases at P–T Parameters of the Middle and Lower Crust. Petrology. 27, 395–406. DOI: https://doi.org/10.1134/S0869591119040039
[21] Bischoff, J.L., Rosenbauer, R.J., Fournier, R.O., 1996. The Generation of HCl in the System CaCl2-H2O: Vapor-Liquid Relations from 380–500°C. Geochimica et Cosmochimica Acta. 60(1), 7–16. DOI: https://doi.org/10.1016/0016-7037(95)00365-7
[22] Ivanov, M.V., 2023. Thermodynamic Model of the Fluid System H2O-CO2-NaCl-CaCl2 at P–T Parameters of the Middle and Lower Crust. Petrology. 31, 413–423. DOI: https://doi.org/10.1134/S0869591123040045
[23] Ivanov, M.V., Bushmin, S.A., 2024. Separation of Salts NaCl and CaCl2 in Aqueous–Carbon Dioxide Deep Fluids. Petrology. 32, 249–257. DOI: https://doi.org/10.1134/S0869591124020036
[24] Aranovich, L.Ya., Zakirov, I.V., Sretenskaya, N.G., et al., 2010. Ternary System H2O-CO2-NaCl at High T–P Parameters: An Empirical Mixing Model. Geochemistry International. 48, 446–455. DOI: https://doi.org/10.1134/S0016702910050022
[25] Ivanov, M.V., Bushmin, S.A., 2021. Thermodynamic Model of the Fluid System H2O-CO2-NaCl at P–T Parameters of the Middle and Lower Crust. Petrology. 29, 77–88. DOI: https://doi.org/10.1134/S086959112006003X
[26] Ivanov, M.V., Bushmin, S.A., Aranovich, L.Y., 2018. Equations of State for NaCl and CaCl2 Solutions of Arbitrary Concentration at Temperatures 423.15–623.15 K and Pressures up to 5 kbar. Doklady Earth Sciences. 481, 1086–1090. DOI: https://doi.org/10.1134/S1028334X18080287
[27] Atkins, P., de Paula, J., 2009. Elements of Physical Chemistry. Oxford University Press: Oxford, UK.
[28] Ivanov, M.V., Babikov, D., 2011. Collisional Stabilization of Van der Waals States of Ozone. Journal of Chemical Physics. 134, 174308. DOI: https://doi.org/10.1063/1.3585690
[29] Ivanov, M.V., Babikov, D., 2012. Efficient Quantum–Classical Method for Computing Thermal Rate Constant of Recombination: Application to Ozone Formation. Journal of Chemical Physics. 136, 184304. DOI: https://doi.org/10.1063/1.4711760
[30] Ivanov, M.V., Babikov, D., 2013. On Molecular Origin of Mass-Independent Fractionation of Oxygen Isotopes in the Ozone Forming Recombination Reaction. PNAS. 110(44), 17708–17713. DOI: https://doi.org/10.1073/pnas.1215464110
[31] Semenov, A., Ivanov, M., Babikov, D., 2013. Ro-Vibrational Quenching of CO (v = 1) by He Impact in a Broad Range of Temperatures: A Benchmark Study Using Mixed Quantum/Classical Inelastic Scattering Theory. Journal of Chemical Physics. 139, 074306. DOI: https://doi.org/10.1063/1.4818488
[32] Ivanov, M.V., Babikov, D., 2016. On Stabilization of Scattering Resonances in Recombination Reaction That Forms Ozone. Journal of Chemical Physics. 144, 154301. DOI: https://doi.org/10.1063/1.4945779
[33] Zezin, D., Driesner, T., Scott, S., et al., 2014. Volumetric Properties of Mixed Aqueous Solutions at Elevated Temperatures and Pressures: The Systems CaCl2-NaCl-H2O and MgCl2-NaCl-H2O to 523.15 K, 70 MPa, and Ionic Strength from 0.1 to 18 mol·kg–1. Journal of Chemical & Engineering Data. 59(8), 2570–2588. DOI: https://doi.org/10.1021/je500371u
[34] Wagner, W., Pruß, A., 2002. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data. 31, 387–535. DOI: https://doi.org/10.1063/1.1461829
[35] Span, R., Wagner, W., 1996. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data. 25, 1509–1596. DOI: https://doi.org/10.1063/1.555991
[36] Ivanov, M.V., 2025. Equation of State of a Fluid H2O-CO2 at Temperatures 50–350°C and Pressures 0.2–3.5 kbar. Journal of Environmental and Earth Sciences. 7(1), 625–631. DOI: https://doi.org/10.30564/jees.v7i1.7327
[37] Tödheide, K., Franck, E.U., 1963. The Two-Phase Region and the Critical Curve in the Carbon Dioxide–Water System up to Pressure of 3500 Bar. Zeitschrift für Physikalische Chemie Neue Folge. 37(5–6), 387–401. DOI: https://doi.org/10.1524/zpch.1963.37.5_6.387
[38] Sourirajan, S., Kennedy, G.C., 1962. The System H2O-NaCl at Elevated Temperatures and Pressures. American Journal of Science. 260(2), 115–141. DOI: https://doi.org/10.2475/ajs.260.2.115
[39] Driesner, T., Heinrich, C.A., 2007. The System H2O-NaCl. Part I: Correlation Formulae for Phase Relations in Temperature–Pressure–Composition Space from 0 to 1000°C, 0 to 5000 Bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta. 71(20), 4880–4901. DOI: https://doi.org/10.1016/j.gca.2006.01.033
[40] Ellingsen, L., Haug-Warberg, T., 2024. Thermodynamics of NaCl in Dense Water Vapor via Cross Virial Coefficients. Geochimica et Cosmochimica Acta. 375, 19–35. DOI: https://doi.org/10.1016/j.gca.2024.04.033
[41] Chase, M.W., 1988. NIST-JANAF Thermochemical Tables. American Chemical Society/American Institute of Physics for the National Bureau of Standards: Washington, DC, USA.
[42] Zakirov, I., Sretenskaja, N., Aranovich, L., et al., 2007. Solubility of NaCl in CO2 at High Pressure and Temperature: First Experimental Measurements. Geochimica et Cosmochimica Acta. 71(17), 4251–4255. DOI: http://doi.org/10.1016/j.gca.2007.01.028
[43] Takenouchi, S., Kennedy, G.C., 1965. The Solubility of Carbon Dioxide in NaCl Solutions at High Temperatures and Pressures. American Journal of Science. 263(5), 445–454. DOI: https://doi.org/10.2475/AJS.263.5.445
[44] Malinin, S.D., 1959. System Water–Carbon Dioxide at High Temperatures and Pressures. Geokhimiya. 3, 235–245.
[45] Malinin, S.D., 1979. Physical Chemistry of Hydrothermal Systems: The Carbon Dioxide. Nauka Publishing: Moscow, Russia. (in Russian)
[46] Pichavant, M., Ramboz, C., Weisbrod, A., 1982. Fluid Immiscibility in Natural Processes: Use and Misuse of Fluid Inclusion Data, I. Phase Equilibria Analysis – A Theoretical and Geometrical Approach. Chemical Geology. 37(1–2), 1–27. DOI: https://doi.org/10.1016/0009-2541(82)90064-X
[47] Ramboz, C., Pichavant, M., Weisbrod, A., 1982. Fluid Immiscibility in Natural Processes: Use and Misuse of Fluid Inclusion Data, II. Interpretation of Fluid Inclusion Data in Terms of Immiscibility. Chemical Geology. 37(1–2), 29–48. DOI: https://doi.org/10.1016/0009-2541(82)90065-1
[48] Dugdale, A.L., Hagemann, S.G., 2001. The Bronzewing Lode-Gold Deposit, Western Australia: P–T–X Evidence for Fluid Immiscibility Caused by Cyclic Decompression in Gold-Bearing Quartz Veins. Chemical Geology. 173(1–3), 59–90. DOI: https://doi.org/10.1016/S0009-2541(00)00268-0
[49] Bons, P.D., Elburg, M.A., Gomez-Rivas, E., 2012. A Review of the Formation of Tectonic Veins and Their Microstructures. Journal of Structural Geology. 43, 33–62. DOI: https://doi.org/10.1016/j.jsg.2012.07.005
[50] Etheridge, M.A., Wall, V.J., Vernon, R.H., 1983. The Role of the Fluid Phase During Regional Metamorphism and Deformation. Journal of Metamorphic Geology. 1(3), 205–226. DOI: https://doi.org/10.1111/j.1525-1314.1983.tb00272.x
[51] Marsala, A., Wagner, T., 2016. Mass Transfer and Fluid Evolution in Late-Metamorphic Veins, Rhenish Massif (Germany): Insight from Alteration Geochemistry and Fluid–Mineral Equilibria Modeling. Mineralogy and Petrology. 110, 515–545. DOI: https://doi.org/10.1007/s00710-016-0424-8
[52] Asadi, S., Moore, F., 2017. Fluid Evolution in H2O–CO2–NaCl System and Metallogenic Analysis of the Surian Metamorphic Complex, Bavanat Cu Deposit, Southwest Iran. Mineralogy and Petrology. 111, 145–161. DOI: https://doi.org/10.1007/s00710-016-0457-z
[53] Yardley, B.W.D., Graham, J.T., 2002. The Origins of Salinity in Metamorphic Fluids. Geofluids. 2, 249–256. DOI: https://dx.doi.org/10.1046/j.1468-8123.2002.00042.x
[54] Aranovich, L.Y., Newton, R.C., Manning, C.E., 2013. Brine-Assisted Anatexis: Experimental Melting in the System Haplogranite–H2O–NaCl–KCl at Deep-Crustal Conditions. Earth and Planetary Science Letters. 374, 111–120. DOI: https://doi.org/10.1016/j.epsl.2013.05.027
[55] Aranovich, L.Y., Makhluf, A.R., Newton, R.C., et al., 2014. Dehydration Melting and the Relationship Between Granites and Granulites. Precambrian Research. 253, 26–37. DOI: https://dx.doi.org/10.1016/j.precamres.2014.07.004
[56] Volkov, I.S., Kozlovskii, V.M., 2023. Formation Stages and Conditions of Carbonate–Silicate Veins and Their Wall-Rock Aureoles in the Early Proterozoic Complexes of the Belomorian Mobile Belt, Northern Karelia. Petrology. 31, 538–557. DOI: https://doi.org/10.1134/S0869591123050077
[57] Volkov, I.S., Prokofiev, V.Y., Kozlovskii, V.M., et al., 2023. Sulfide Mineralization of Carbonate–Silicate Veins in Early Proterozoic Metabasites of North Karelia: Mineral Assemblages, Mineral Forms of Silver, and Fluid Inclusions. Geology of Ore Deposits. 65, 567–594. DOI: https://doi.org/10.1134/S1075701523060107
[58] Volkov, I.S., Dubinina, E.O., Kossova, S.A., et al., 2024. Isotope (δ18O, δ13C, δD) Characteristics of Biotite–Carbonate–Quartz Associations of Hydrothermal Veins in Metabasites of North Karelia. Doklady Earth Sciences. 518, 1465–1471. DOI: https://doi.org/10.1134/S1028334X24602566
[59] Volkov, I.S., 2024. Hydrothermal Veins in Metabasites of North Karelia: Mineral Associations, Formation Conditions and Fluid Composition [PhD Thesis]. Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences: Moscow, Russia. pp. 1–128. (in Russian)
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Mikhail V. Ivanov

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.




Mikhail V. Ivanov