Research and Application of Assessment of Wind Energy in Large-Scale Wind Power Bases

Authors

  • Ling Yuan

    Haizhuang Wind Power Co., Ltd., China State Shipbuilding Corp. (CSSC), Chongqing 401120, China

  • Ling Bai

    1. Economic Transformation of Climate Resources Key Laboratory, China Meteorological Administration, Chongqing 401120, China; 2. Liangping Meteorological Bureau, Chongqing 405200, China

  • Jianke li

    Haizhuang Wind Power Co., Ltd., China State Shipbuilding Corp. (CSSC), Chongqing 401120, China

  • Peng Chen

    Haizhuang Wind Power Co., Ltd., China State Shipbuilding Corp. (CSSC), Chongqing 401120, China

  • Haichuan Long

    Haizhuang Wind Power Co., Ltd., China State Shipbuilding Corp. (CSSC), Chongqing 401120, China

  • Xia Ruan

    Haizhuang Wind Power Co., Ltd., China State Shipbuilding Corp. (CSSC), Chongqing 401120, China

  • Qi Luo

    1. Economic Transformation of Climate Resources Key Laboratory, China Meteorological Administration, Chongqing 401120, China; 2. Chongqing Shete Meteorological Application Research Institute, Chongqing Meteorological Service, Chongqing 401120, China

DOI:

https://doi.org/10.30564/jees.v7i2.7620
Received: 28 October 2024 | Revised: 17 November 2024 | Accepted: 20 November 2024 | Published Online: 23 January 2025

Abstract

Improving the accuracy of the evaluation of the performance of wind farms in large wind power bases located in complex terrain under the actual atmosphere is crucial to the sustainable development of wind power. To this end, this study combined the Weather Research and Forecasting (WRF) model with the Wind Farm Parameterization (WFP) method to investigate the wake characteristics and operational performance of large onshore wind farms in the complex terrain of Jiuquan City, Gansu Province, China. The research results showed that after verification, the systematic error of the WRF simulations was less than 3%. The WRF model and the WFP scheme simulated a significant warming phenomenon within the wind power base area, while a cooling effect was observed outside. The analysis of the wake effects indicated that the impact of Phase I construction on Phase II construction of the wind power base was minimal. During the operation of the entire wind power base, the wind speed within the wind farm decreased by approximately 10%, and the influence range of the predominant wind direction extended over a hundred kilometers downwind. The research conclusions provide a powerful scientific basis for optimizing design and operation, improving efficiency, minimizing the negative impacts on adjacent wind turbines, and ensuring the sustainable development of wind energy through dynamic planning and scientific assessment.

Keywords:

Large-Scale Wind Power Base; Mesoscale Simulation; Risk Assessment; Performance Evaluation and Improvement

References

[1] IEA, 2014. China Wind Energy Development Roadmap 2050. OECD Publishing: Paris, France.

[2] Wang, Q., Luo, K., Wu, C., et al., 2022. Mesoscale Simulations of A Real Onshore Wind Power Base in Complex Terrain: Wind Farm Wake Behavior and Power Production. Energy. 241. DOI: https://doi.org/10.1016/j.energy.2021.122873

[3] Harris, R., Zhou, L., Xia, G. Satellite Observations of Wind Farm Impacts on Nocturnal Land Surface Temperature in Iowa. Remote Sensing., 6(12), 12234–46. DOI: https://doi.org/10.3390/rs61212234

[4] Chen, S., Cao, R., Xie, Y., 2021. Study of the Seasonal Variation in Aeolus Wind Product Performance over China using ERA5 and Radiosonde Data. Atmospheric Chemistry and Physics,. 21(15), 11489–11504. DOI: https://doi.org/10.5194/acp-21-11489-2021

[5] De Montera, L., Berger, H., Husson, R., et al,, 2022. High-resolution Offshore Wind Resource Assessment at Turbine Hub Height with Sentinel-1 Synthetic Aperture Radar (SAR) Data and Machine Learning. Wind Energy Science. 7(4), 1441–1453. DOI: https://doi.org/10.5194/wes-7-1441-2022

[6] Abkar, M., Porté-Agel, F., The Effect of Free-Atmosphere Stratification on Boundary-layer Flow and Power Output from Very Large Wind Farms. Energies. 6(5), 2338–61. DOI: https://doi.org/10.3390/en6052338

[7] Mears, C., Lee, T., Ricciardulli, L., et al., 2022. Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds. Remote Sensing. 14, 4230. DOI: https://doi.org/10.3390/rs14174230

[8] Keith, D.W., DeCarolis, J.F., Denkenberger, D.C., et al., 2004. The Influence of Large-scale Wind Power on Global Climate. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101(46), 16115–20. DOI: https://doi.org/10.1073/pnas.0406930101

[9] Porté-Agel, F., Lu, H., Wu, Y.T., 2014. Interaction between Large Wind Farms and the Atmospheric Boundary Layer. Procedia IUTAM. 10, 307–318. DOI: https://doi.org/10.1016/j.piutam.2014.01.026

[10] Churchfield, M.J., Lee, S., Michalakes, J., et al., 2012. A Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine Dynamics. Journal of Turbulence, 13, 1–32. DOI: https://doi.org/10.1080/14685248.2012.668191

[11] Skamarock, W.C., Klemp, J.B., Dudhia, J., 2008. A Description of the Advanced Research WRF Version 3.0 (NCAR TECHNICAL NOTE). Available from: https://www.researchgate.net/publication/306154004_A_Description_of_the_Advanced_Research_WRF_Version_3 (cited on 10 October 20224).

[12] Wang, Q., Luo, K., Yuan, R., et al., 2020. A Multiscale Numerical Framework Coupled with Control Strategies for Simulating A Wind Farm in Complex Terrain. Energy. 203. DOI: https://doi.org/10.1016/j.energy.2020.117913

[13] Carvalho, D., Rocha, A., Santos, C.S., et al., 2013. Wind Resource Modeling in Complex Terrain Using Different Mesoscale–microscale Coupling Techniques. Applied Energy, 108, 493–504. DOI: https://doi.org/10.1016/j.apenergy.2013.03.074

[14] Srinivas, C.V., Yesubabu, V., Hari Prasad, D., et al., 2018. Simulation of An Extreme Heavy Rainfall Event over Chennai, India using WRF: Sensitivity to Grid Resolution and Boundary Layer Physics. Atmospheric Research, 210, 66–82. DOI: https://doi.org/10.1016/j.atmosres.2018.04.014

[15] Fitch, A.C., Olson, J.B., Lundquist, J.K. Parameterization of Wind Farms in Climate Models. Journal of Climate, 26(17), 6439–58. DOI: https://doi.org/10.1175/JCLI-D-12-00376.1

[16] Abkar, M., Porté-Agel, F., A New Wind-farm Parameterization for Large-scale Atmospheric Models. Journal of Renewable and Sustainable Energy, 7(1), 013121. DOI:https://doi.org/10.1063/1.4907600

[17] Baidya Roy, S. Simulating Impacts of Wind Farms on Local Hydrometeorology. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 491–498. DOI: https://doi.org/10.1016/j.jweia.2010.12.013

[18] Mughal, M.O., Lynch, M., Yu, F., et al., 2017. Wind Modeling, Validation and Sensitivity Study Using Weather Research and Forecasting Model in Complex Terrain. Environmental Modelling & Software, 90, 107–125. DOI: https://doi.org/10.1016/j.envsoft.2017.01.009

[19] Malardel, S., Wedi, N., Deconinck, W., et al., 2015. A New Grid for the IFS fromNewsletter No.146–Winter. Available from: https://www.ecmwf.int/sites/default/files/elibrary/2016/17262-new-grid-ifs.pdf. (cited on 10 October 20224).

[20] Janjic, Z.I., 1994. The Step-mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122, 927–945. DOI: https://doi.org/10.1175/1520-0493(1994)122<0927: TSMECM>2.0.CO;2

[21] Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Monthly Weather Review, 121, 764–787. DOI: https://doi.org/10.1175/1520-0493(1993)121<0764: PEOAUB>2.0.CO;2

[22] Grell, G.A., Devenyi, D., 2002. A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophysical Research Letters , 29, 38–31. DOI: https://doi.org/10.1029/2002GL015311

[23] Thompson, G., Field, P.R., Rasmussen, R.M., et al., 2008. Explicit Forecasts of Winter Precipitation Using An Improved Bulk Microphysics Scheme. Part II: Implementation of A New Snow Parameterization. Monthly Weather Review, 136, 5095–5115. DOI: https://doi.org/10.1175/2008MWR2387.1

[24] Mlawer, E.J., Taubman, S.J., Brown, P.D., et al., 1997. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, A Validated Correlated-K model for the Longwave. Journal of Geophysical Research: Atmospheres, 102, 16663–16682. DOI: https://doi.org/10.1029/97jd00237

[25] Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using A Mesoscale Two-dimensional Model. Journal of the Atmospheric Sciences, 46, 3077–3107. DOI: https://doi.org/10.1175/1520-0469(1989)046<3077: NSOCOD>2.0.CO;2

[26] Tewari, M., Chen, F., Wang, W., et al., 2004. Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model. Bulletin of the American Meteorological Society, 2165–2170.

[27] Beljaars, A.C.M., Brown, A.R., Wood, N. A New Parametrization of Turbulent Orographic Form Drags. Quarterly Journal of the Royal Meteorological Society, 130(599), 1327–1347. DOI: https://doi.org/10.1256/qj.03.73

[28] Zhou, X., Yang, K., Ouyang, L., et al., 2021. The Added Value of Kilometer-scale Modeling over the Third Pole Region: a CORDEX-CPTP Pilot Study. Climate Dynamics, 57(7–8), 1673–1687. DOI: https://doi.org/10.1007/s00382-021-05653-8

[29] Fitch, A.C., Olson, J.B., Lundquist, J.K., et al., 2012. Local and Mesoscale Impacts of Wind Farms as Parameterized in A Mesoscale NWP Model. Monthly Weather Review, 140(9), 3017–3038. DOI: https://doi.org/10.1175/MWR-D-11-00352.1

Downloads

How to Cite

Yuan, L., Bai, L., li, J., Chen, P., Long, H., Ruan, X., & Luo, Q. (2025). Research and Application of Assessment of Wind Energy in Large-Scale Wind Power Bases. Journal of Environmental & Earth Sciences, 7(2), 117–128. https://doi.org/10.30564/jees.v7i2.7620