Characterization of Mycoflora Associated with Catharanthus roseus Collected from Gardens in Kenitra City, Morocco

Authors

  • Najoua Mouden

    Laboratory of Molecular Chemistry, Materials and Environment, Multidisciplinary Faculty Nador (FPN), Mohammed 1st University, Oujda 62702, Morocco

  • Mohamed Elouardi

    Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environment, Faculty of Science, Mohammed V University, Rabat BP1014, Morocco

  • Nouha Achajri

    Laboratory of Plant, Animal and Agro-industry Productions, Ibn Tofail University, Kenitra 14000, Morocco

  • Jamal Mabrouki

    Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environment, Faculty of Science, Mohammed V University, Rabat BP1014, Morocco

  • Rachid Benkirane

    Laboratory of Plant, Animal and Agro-industry Productions, Ibn Tofail University, Kenitra 14000, Morocco

  • Allal Douira

    Laboratory of Plant, Animal and Agro-industry Productions, Ibn Tofail University, Kenitra 14000, Morocco

  • Amina Ouazzani Touhami

    Laboratory of Plant, Animal and Agro-industry Productions, Ibn Tofail University, Kenitra 14000, Morocco

DOI:

https://doi.org/10.30564/jees.v7i1.7655
Received: 1 November 2024 | Revised: 26 November 2024 | Accepted: 27 November 2024 | Published Online: 12 December 2024

Abstract

This paper reports on the composition of fungal communities occurring on diseased tissues of Catharanthus roseus, which differed between organs. In total, ten different filamentous fungi were isolated, and the percentage of isolation varied significantly among the organs. Botrytis cinerea was the most prevalent fungus found on the plant's aboveground parts, with a frequency exceeding 50%. On twigs, the occurrence rate was 95.6%. It was isolated from leaves with a frequency of 88%, followed by Aspergillus niger (71.66 %), Alternaria alternata (67.33 %), Cladosporium herbarum (61%), Fusarium oxysporum (50.66%), Epicoccum nigrum (57.66%), Curvularia lunata (49.66%), Trichoderma harzianum (40%), and Penicillium sp. (27%). Whereas, Fusarium genus was more represented and six species were recorded: F. subglutinans (26%), F. chlamydosporium (20%), F. vertillioides (15.66%), F. solani (10%), F. oxysporum and F. nivale. Results highlighted dissimilar distribution of Fusarium species was noted on Catharanthus tissues on which F. subglutinas, F. chlamydosporium and F. oxysporum coexist on leaves and roots while F. solani was retrieved from leaves against F. nivale from roots. The floral buds and pods harbored opportunist fungi such as B. cinerea, Alternaria alternata and E. nigrum.  On roots, Aspergillus, Penicillium and Fusarium were the main genera occurring with the frequencies of 26% (F. chlamydosporium), 40% (F. nivale), 72.33% (A. niger), 47.66% (A. flavus) and 37.66% (A. fumigatus). But no fungal species were detected on seeds of Catharanthus roseus. This is the first study to describe and enumerate the fungal complex associated with various symptoms on the aerial parts of Catharanthus roseus.

Keywords:

Isolation; Identification; Catharanthus roseus; Mycoflora; Morocco

References

[1] Naeem, M., Ansari, A.A., Aftab, T., et al., 2019. Application of triacontanol modulates plant growth and physiological activities of Catharanthus roseus (L.). International Journal of Botany Studies. 4(2), 131–135.

[2] Jaleel, C.A., Panneerselvam, R., 2007. Variations in the antioxidative and indole alkaloid status in different parts of two varieties of Catharanthus roseus. Chinese Journal of Pharmacology and Toxicology. 21(6), 487–494.

[3] Karthikeyan, B., Jaleel, C.A., Gopi, R., et al., 2007. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs. Journal of Zhejiang University Science B. 8, 453–457.

[4] Das, S., Sharangi, A.B., 2017. Madagascar periwinkle (Catharanthus roseus L.): diverse medicinal and therapeutic benefits to humankind. Journal of Pharmacognosy and Phytochemistry. 6(5), 1695–701.

[5] Pham, H.N.T., Vuong, Q.V., Bowyer, M.C., et al., 2020. Phytochemicals derived from Catharanthus roseus and their health benefits. Technologies. 8(4), 80.

[6] Ayob, F.W., Simarani, K., Zainal Abidin, N., et al., 2017. First report on a novel N igrospora sphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties. Microbial Biotechnology. 10(4), 926–932.

[7] Almagro, L., Fernández-Pérez, F., Pedreño, M.A., 2015. Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules. 20(2), 2973–3000.

[8] Balaabirami, S., Patharajan, S., 2012. In vitro antimicrobial and antifungal activity of Catharanthus roseus leaves extract against important pathogenic organisms. International Journal of Pharmacy and Pharmaceutical Sciences. 4 (3), 487–490.

[9] Gajalakshmi, S., Vijayalakshmi, S., Devi, R.V., 2013. Pharmacological activities of Catharanthus roseus: a perspective review. International Journal of Pharma and Bio Sciences. 4(2), 431–439.

[10] Wilson, D., 1995. Endophyte: The evolution of a term and clarification of its use and definition. Oikos. 73(2), 274–276.

[11] Musetti, R., Polizzotto, R., Grisan, S., et al., 2007. Effects induced by fungal endophytes in Catharanthus roseus tissues infected by phytoplasmas. Bulletin of Insectology. 60(2), 293.

[12] Pathak, P., Rai, V.K., Can, H., et al., 2022. Plant-endophyte interaction during biotic stress management. Plants. 11(17), 2203.

[13] Asai, T., Luo, D., Yamashita, K., et al., 2013. Structures and biomimetic synthesis of novel α-Pyrone polyketides of an endophytic Penicillium sp. in Catharanthus roseus. Organic Letters. 15(5), 1020–1023.

[14] Jasmine, D.J., Agastian, P., 2013. In vitro antioxidant activity and in vivo alpha glucosidase activity of endophytic actinomycetes isolated from Catharanthus roseus (l.) G. Don. Journal of pharmacy research. 6(6), 674–678.

[15] Dhayanithy, G., Subban, K., Chelliah, J.. 2019. Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiology. 19(22), 1–14.

[16] Ayob, F.W., Simarani, K., 2016. Endophytic filamentous fungi from a Catharanthus roseus: Identification and its hydrolytic enzymes. Saudi Pharmaceutical Journal. 24(3), 273–278.

[17] Birat, K., Binsuwaidan, R., Siddiqi, T.O., et al., 2022. Report on vincristine-producing endophytic fungus Nigrospora zimmermanii from leaves of Catharanthus roseus. Metabolites, 12(11), 1119.

[18] Holcomb, G.E., 1998. First report of Choanephora flower spot and blight of periwinkle. Plant Disease. 82(4), 447.

[19] Holcomb, G.E., 2000. First report of Sclerotium rolfsii on Catharanthus roseus. Plant disease. 84(2), 200.

[20] Montano, H.G., Dally, E.L., Davis, R.E., 2001. First report of natural infection by “Candidatus phytoplasma brasiliense" in Catharanthus roseus. Plant Disease. 85(11), 1209.

[21] Sharma, P., Meena, P.D., Singh Y.P., 2013. New record of twig blight on Catharanthus roseus in India. African Journal of Microbiology Research. 7(38), 4680–4682.

[22] Ou-Yang, W., Wu, W.S., 1998. Survey of periwinkle diseases in Taiwan. Plant Pathology Bulletin. 7(3), 147–149

[23] Sun, Z.X., Hsiang, T., 2016. First report of Sclerotinia sclerotiorum on periwinkle (Catharanthus roseus) in Ontario, Canada. Plant Disease. 100(8), 1789.

[24] Mridha, M.A.U., Rahman, M.M., 2015. Leaf blight of Catharanthus roseus (L). G. Don caused by Macrophomina phaseolina (TASSI) Goid and its in vitro control through bio-pesticides. Pakistan Journal of Botany. 47(2), 741–745,

[25] Hao, W., Richardson, P.A., Hong, C.X., 2010. Foliar blight of annual vinca (Catharanthus roseus) caused by Phytophthora tropicalis in Virginia. Plant Disease. 94(2), 274–274.

[26] Garibaldi, A., Bertetti, D., Gullino, M.L., 2006. First report of leaf blight caused by Rhizoctonia solani AG 1B on Madagascar periwinkle (Catharanthus roseus) in Italy. Plant Disease. 90 (10), 1361–1361.

[27] Baysal-Gurel, F., Bika, R., Simmons, T., et al., 2022. Identification and management of Phytophthora aerial blight caused by Phytophthora nicotianae on Catharanthus roseus. Plant Disease. 106(4), 1271–1277.

[28] Intaparn, P., Noireung, P., Maumoon, R., et al., 2020. First record of Phytopythium sp. causing root and stem rot on Catharanthus roseus in Thailand. Plant Pathology & Quarantine. 10(1), 10–20. DOI: https://doi.org/10.5943/ppq/10/1/2

[29] Benkirane, R., 1995. Contribution à l'étude des maladies du riz au Maroc. Cas de la pyriculariose due à Pyricularia oryzae, 3rd cycle [Doctoral thesis]. Ibn Tofail University, Faculty of Science: Kenitra, Marocco. 189p. (in French)

[30] Okayo, R.O., Andika, D.O., Dida, M.M., et al., 2020. Morphological and molecular characterization of toxigenic Aspergillus flavus from groundnut kernels in Kenya. International Journal of Microbiology. 2020(1), 8854718. DOI: https://doi.org/10.1155/2020/8854718

[31] Samson, R.A., Visagie, C.M., Houbraken, J., et al., 2014. Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in mycology. 78(1), 141–173. DOI: https://doi.org/10.1016/j.simyco.2014.07.004

[32] Visagie, C.M., Houbraken, J., Frisvad, J.C., 2014. Identification and nomenclature of the genus Penicillium. Studies in mycology. 78(1), 343–371.

[33] Frisvad, J.C., Hubka, V., Ezekiel, C.N., et al., 2019. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins, and other mycotoxins. Studies in mycology. 93(1), 1–63. DOI: https://doi.org/10.1016/J.SIMYCO.2018.06.001

[34] Qostal, S., Kribel, S., Chliyeh, M., et al., 2019. Curvularia spicifera, a parasite of the fungal complex of root rot of wheat and barley in Morocco. Plant Cell Biotechnology and Molecular Biology. 20(9&10), 354–365.

[35] Gilman, C.J., 1957. A manual of soil fungi, 2nd ed. The Iowa State College Press: Ames, IA, USA. p. 452.

[36] Tarr, S., 1962. Diseases of Sorghum, Sudan Grass and Broom Corn. The Commonwealth Mycological Institute: Kew, Surrey, UK. p. 380.

[37] Ellis, M.B., 1971. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute: Kew, Surrey, UK. pp. 287 –608.

[38] Chidambaram, P., Mathur, S.B., Neergaard, P., 1974. Identification of seed-borne Drechslera species. Handbook on Seed Health Testing, series 2 B. 10(3), 165–207.

[39] Domsch, K.H., Gams, W., Anderson, T.H., 1980. Compendium of soil fungi, Volume1. Academic Press: London, UK. 859p.

[40] Champion, R., 1997. Identifier les champignons transmis par les semences. INRA: Editions Quae, Paris. pp. 1–400. (in French)

[41] Ponchet, A., 1966. Etude des contaminations mycopéricarpiques du caryopse du blé. Crop Research (Hisar). 7(3), 554–460. (in French)

[42] Anahosur, K.H., 1992. Sorgum diseases in India: Knowledge and research needs. In: de Milliano, W.A.J., Frederiksen, R.A., Bengston, G.D. (Eds.). Sorghum and millets diseases: a second world review. International crops research institute for the semi- arid tropics: Patancheru, IN, USA. pp. 45–56.

[43] Singh, S.D., Bandyopadhyay, R., 2000. Grain mold. In: Frederiksen, R.A., Odvody, G.N. (Eds.). Compendium of Sorghum Diseases. American Phytopathological Society: St. Paul, MN, USA. pp. 38–40.

[44] MacKenzie, S.J., Xiao, C.L., Mertely, J.C., et al., 2003. Uniformity of strawberry yield and incidence of Botrytis fruit rot in an annual production system. Plant Disease. 87(8), 991–998.

[45] Gabriolotto, C., Monchiero, M., Gre, M.L., et al., 2009. Effectiveness of control strategies against Botrytis cinerea in vineyard and evaluation of the residual fungicide concentrations. Journal of Environmental Science and Health Part B. 44(4), 389–396.

[46] Monteiro, E., Gonçalves, B., Cortez, I., et al., 2022. The Role of biostimulants as alleviators of biotic and abiotic stresses in Grapevine: A Review. Plants. 11(3), 396.

[47] Schmid, A., Daniel, C., Weibel, F., 2005. Effect of cultural methods on leaf spot (Mycosphaerella fragariae) and gray mold (Botrytis cinerea) damage in strawberries. BioControl. 50(1), 179–194.

[48] Mouden, N., Al Batnan, A., Benkirane, R., et al., 2016. Diversity and distribution of fungi from strawberry plants grown in Gharb-Loukkos (Morocco). International Journal of Recent Scientific Research. 7(10), 13630–13641.

[49] O'Neill, T.M., Shtienberg, D., Elad, Y., 1997. Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Disease. 81(1), 36–40.

[50] Mouria, B., 2009. Contribution à la lutte biologique contre la pourriture grise et la verticilliose de la tomate cultivée sous serre par utilisation du compost et les Trichoderma spp. seul ou en combinaison. Ibn Tofail University: Kenitra, Marocco. p. 295. (in French)

[51] Van Beneden, S., Pannecoucque, J., Debode, J., et al., 2009. Characterization of fungal pathogens causing basal rot of lettuce in Belgian greenhouses. European Journal of Plant Pathology. 124(1), 9–19.

[52] Bika, R., Baysal-Gurel, F., Jennings, C., 2021. Botrytis cinerea management in ornamental production: a continuous battle, Canadian Journal of Plant Pathology. 43(3), 345–365. DOI: 10.1080/07060661.2020.1807409

[53] Araújo, A.E., Maffia, L.A., Mizubuti, E.S.G., et al., 2005. Survival of Botrytis cinerea as mycelium in rose crop debris and as sclerotia in soil. Fitopatologia Brasileira. 30, 516–521.

[54] Meddah, N., Ouazzani Touhami, A., Benkirane, R., et al., 2006. Caractéristation de la mycoflore pathogène d'Hibiscus rosa sinensis L. et d'Acalypha wilkesiana J. Mueller de la ville de Kénitra (Maroc). Bulletin de l'Institut scientifique, Rabat, section sciences de la vie. 28, 7–11. (in French)

[55] Garibaldi, A., Bertetti, D., Gullino, M.L., 2009. First report of Botrytis blight caused by Botrytis cinerea on Periwinkle (Catharanthus roseus) in Italy. Plant Disease. 93(5), 554. DOI: https://doi.org/10.1094/PDIS-93-5-0554B

[56] Pikovskyi, M.Y., Kolesnichenko, O.V., Melnyk, V.I., et al., 2018. Flower-ornamental plant- the host of Botrytis cinerea. Bioresources and Nature Management. 10, 5–10.

[57] Mouden, N., Ouazzani Touhami, A., Benkirane, R., et al., 2023. Comparative pathogenic capacity of three fungal species onto detached leaves of sabrina strawberry variety. In Proceedings of the 5th International Food, Agriculture and Veterinary Sciences Congress; Kafkas University, Kars, Türkiye, 17–19 March 2023.

[58] Lamrani, N., Elabdellaoui, F., Touhami, A.O., et al., 2013. Etude De La Mycoflore Des Grains De Trois Variétés De Riz Et Effet d'Alternaria Padwickii (Ganguly) Mb Ellis Sur Les Grains Pré-Germés. Bulletin De L'institut Scientifique, Rabat. 35, 1–7. (in French)

[59] Park, J., Kim, S., Jo, M., et al., 2024. Isolation and Identification of Alternaria alternata from Potato Plants affected by leaf spot disease in Korea: Selection of Effective Fungicides. Journal of Fungi. 10(1), 53. DOI: https://doi.org/10.3390/jof10010053

[60] El Aymani, I., Qostal, S., Mouden, N., et al., 2019. Fungi associated with saffron (Crocus sativus) in Morocco. Plant cell biotechnology and Molecular Biology. 20, 1180–1188.

[61] Ourras, S., Aymani, I.E., Mouden, N., et al., 2022. Mycoflora of Dormant Crocus Sativus Corms in Morocco. In International Conference on Advanced Intelligent Systems for Sustainable Development. Springer: Cham, Switzerland. pp. 479–489.

[62] Masunaka, A., Ohtani, K., Peever, T.L., et al., 2005. An isolate of Alternaria alternata that is pathogenic to both tangerines and rough lemon and produces two host selective toxins, ACT- and ACR-toxins. Phytopathology. 95(3), 241–247.

[63] Maouni, A., Lamarti, A., Aidoun, A., et al., 2007. Effect of benzimidazole fungicides and calcium chloride on Alternaria alternata and Penicillium expansum rot during storage of pears. African Journal of Biotechnology. 6(11), 1289–1292.

[64] Bigre, J.-P., Morand, J.-C., Tharaud, M., 1987. Pathologie des cultures florales et ornementales. Ed. Lavoisier: Paris, France. 233p. (in French)

[65] Lahuf, A.A., 2019. Alternaria alternata causes leaf blight of rosy periwinkle (Catharanthus roseus) in Iraq. Australasian Plant Disease Notes. 14(4), 1–3. DOI: https://doi.org/10.1007/s13314-019-0334-9.

[66] Krishnamurthy, Y.L., Naik, S.B., Jayaram, S., 2008. Fungal communities in herbaceous medicinal plants from the Malnad region, Southern India. Microbes and environments. 23(1), 24–28.

[67] Ramalingam, P., Muthukrishnan, S. 2013. Screening and characterization of antimicrobial compound from endophytic fungus Curvularia lunata, isolated from Catharanthus roseus. World Journal of Pharmaceutical research. 2(6), 3078–3086.

[68] Kharwar, R.N., Verma, V.C., Strobel, G., et al., 2008. The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Current science. 95(2), 228–233.

[69] Pandey, S.S., Singh, S., Babu, C.V., et al., 2016. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Scientific reports. 6(1), 26583.

[70] Hassikou, K., Hassikou, R., Douira, A., 1997. Behaviour of some rice cultivars in relation to Curvularia lunata. Phytopathologia Mediterranea. 36(3), 163–164.

[71] Knox, G.W., Klingeman, W.E., Paret, M., et al., 2012. Management of pests, plant diseases and abiotic disorders of Magnolia species in the Southeastern United States: a review. Journal of Environmental Horticulture. 30(4), 223–234.

[72] Kafur, A., Basheer Khan, A., 2011. Isolation of endophytic actinomycetes from Catharanthus roseus (L.) G. Don leaves and their antimicrobial activity. Iranian Journal of Biotechnology. 9(4), 302–306.

[73] Lambert, L., 2004. Pourritures des jeunes plants en culture ornementale. Cultures en serres. 1–4. (in French)

[74] Hyeon, N.M., Park, M.S., Kim, H.G., et al., 2009. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. Journal of Microbiology Biotechnology. 19(5), 520–524.

[75] Meddah, N., Ouazzani Touhami, A., Douira, A., 2010. Mycoflore associée au bananier (Musa accuminata L.), variété Grande naine, cultivé sous serre dans la région du Gharb (Maroc). Bulletin de l'Institut Scientifique, Rabat, section Sciences de la Vie. 32(1), 1–11.

[76] Yasir, L.B., Almaliky, B.S., 2023. Integrated control of root rot and wilt disease on Catharanthus roseus using biological and chemical control. Iraqi Journal of Market Research and Consumer Protection. 15(1), 132–146.

[77] Abd-Elsalam, K.A., Omar, M.R., El-Samawaty, A.R., et al., 2007. Response of commercial cotton cultivars to Fusarium solani. The Plant Pathology Journal. 23(2), 62–69.

[78] Rieuf, P., 1965. Champignons observés sur Geranium rosat (Pelargonium capitatum AIT.) au Maroc. Al Awamia. 16, 43–98.

[79] Subramanyam, P., 1991. Control of seedling disease of groundnut. Nigerian Tropical Pest Management. 37, 118–119.

[80] Islam, N.F., Borthakur, S.K., 2012. Screening of the mycota associated with Aijung rice seed and their effects on seed germination and seedling vigour. Plant Pathology & Quarantine. 2(1), 75–85.

[81] Vigier, B., Reid, L.M., Seifert, K.A., et al., 1997. Distribution and prediction of Fusarium species associated with maize ear rot in Ontario. Canadian Journal of Plant Pathology. 19(1), 60–65.

[82] El-Meleigi, M.A., Claflin, L.E., Raney, R.J., 1983. Effect of seedborn Fusarium moniliforme and irrigation scheduling on colonization of root and stalk tissue, stalk rot incidence and grain yield. Crop Science. 23(6), 1025–1028.

[83] Cardwell, K.F., Kling, J.G., Maziya-Dixon, B., et al., 2000. Interactions between Fusarium verticillioides, Aspergillus flavus, and insect infestation in four maize genotypes in lowland Africa. Phytopathology. 90(3), 276–284.

[84] Farrar, J.J., Davis, R.M., 1991. Relationship among ear morphology, western flower thrips, and Fusarium ear rot of corn. Phytopathology. 81(6), 661–666.

[85] Fraval, A., Silvy, C., 1999. La lutte biologique (II). Dossiers de l'environnement de l'INRA. 19, 274. (in French)

[86] Elad, Y., Chet, I., Boyle, P., et al., 1983. Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii. Scanning electron microscopy and fluorescence microscopy. Phytopathology. 73(1), 85–88.

[87] Wells, H.D., Bell, D.K., Jaworski, C.A., 1972. Efficiency of Trichoderma harzianum as a biocontrol for Sclerotium rolfsii. Phytopathology. 62(4), 442–447.

[88] Ezzahiri, B., Sekkat, A., 2001. Maladies et ravageurs de l'arachide identification et moyens de lutte. Bulletin Mensuel d'Information et de Liaison du PNTTA. Transfert de Technologie en Agriculture. 86, 1–4. (In French)

[89] Mendes, M.A.S., da Silva, V.L., Dianese, J.C., 1998. Fungos em Plants no Brasil. Embrapa-SPI/Embrapa-Cenargen, Brasilia, Brazil. p. 555. (in Portuguese)

[90] Teodoro, N.G., 1937. An enumeration of Philippine fungi. Technical bulletin 4, Philippines Department of Agriculture and Commerce. 4, 585.

[91] Lumyong, P., Photita, W., McKenzie, E.H.C., et al., 2003. Saprobic fungi on dead wild banana. Mycotaxon. 85, 345–346.

[92] Zhuang, W.Y., 2001. Higher fungi of tropical China. Mycotaxon, Ltd.: Ithaca, NY, USA, p. 485.

[93] Gnancadja-André, L., Ouazzani Touhami, A., Badoc, A., et al., 2004. Test de détection des contaminants fongiques des grains de riz en fin de cycle végétatif. Bulletin de la Société de pharmacie de Bordeaux. 143(1–4), 39–50. (in French)

[94] Alsubaie, S., Bokhari, F., Najjar, A., 2023. Diversity of endophytic and exophytic fungi isolated from Catharanthus roseus LG Don. leaves in Saudi Arabia. AGBIR. 39(3), 572–577.

Downloads

How to Cite

Najoua Mouden, Mohamed Elouardi, Nouha Achajri, Jamal Mabrouki, Rachid Benkirane, Allal Douira, & Amina Ouazzani Touhami. (2025). Characterization of Mycoflora Associated with Catharanthus roseus Collected from Gardens in Kenitra City, Morocco. Journal of Environmental & Earth Sciences, 7(1), 261–273. https://doi.org/10.30564/jees.v7i1.7655