
Long-Term Environmental and Human Health Impacts of Hazardous Waste Incineration: A Case-Study in Catalonia, Spain
DOI:
https://doi.org/10.30564/jees.v7i6.9253Abstract
This comprehensive review synthesizes findings from the studies conducted for more than two decades to assess environmental and human health impacts near Spain's first hazardous waste incinerator (HWI) located in Constantí (Tarragona, Catalonia). Through integrated analysis of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and metals across soil, vegetation, human tissues, and dietary matrices, the studies have shown: (1) PCDD/F concentrations decreased 75–96% in biological samples and dietary intake over 20 years, aligning with global emission reductions rather than HWI operations; (2) metal trajectories showed arsenic intermittently exceeding carcinogenic thresholds in soils (1.1 × 10-4 risk index) and chromium accumulating in autopsy tissues (+16% in kidney), although without HWI-specific spatial gradients; (3) systemic biomarkers revealed policy-driven declines—blood lead dropped 70% post-EU regulations, while mercury became undetectable in tissues post-2010. Health risk assessments confirmed that PCDD/F intake (0.122 pg WHO-TEQ/kg/day) remained still below WHO thresholds, with no attributable cancer risks for metals except legacy arsenic. The studies included in the program of surveillance show that PCDD/Fs and metals emissions by the HWI have meant a rather low contribution to population exposure to metals and PCDD/Fs compared to dietary and historical sources. However, residual risks warrant attention. It mainly concerns chromium speciation and arsenic in soils, as well as the effects on vulnerable subpopulations and the synergistic effects among toxicants. Epidemiological studies are also required.
Keywords:
Hazardous Waste Incineration; Biomonitoring; Dioxins; Heavy Metals; Environmental Health; Risk AssessmentReferences
[1] US EPA, 2020. Hazardous waste. Available from: https://www.epa.gov/hw/learn-basicshazardous-waste#hwid (Accessed: February 12, 2025).
[2] EC (European Commission), 2024. Waste Statistics. Available from: https://ec.europa.eu/eurostat/statistics-explained/ (Accessed: February 15, 2025).
[3] Domingo J.L., Marquès M., Mari M., et al., 2020. Adverse health effects for populations living near waste incinerators with special attention to hazardous waste incinerators. A review of the scientific literature. Environmental Research. 187. 109631. https://doi.org/10.1016/j.envres.2020.109631
[4] Olie K., Vermeulen P.L., Hutzinger O., 1977. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere. 6(8), 455–459. https://doi.org/10.1016/0045-6535(77)90035-2
[5] IARC (International Agency for Research), 1997. Cancer working group on the evaluation of carcinogenic risks to humans: polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Lyon, France. IARC Monogr. Eval. Carcinog. Risks Hum., 69 (4–11 February 1997), pp. 1–631.
[6] Schuhmacher M., Granero S., Llobet J.M., et al., 1997. Assessment of baseline levels of PCDD/F in soils in the neighbourhood of a new hazardous waste incinerator in Catalonia, Spain. Chemosphere. 35(9), 1947–58. https://doi.org/10.1016/S0045-6535(97)00269-5
[7] Schuhmacher M., Domingo J.L., Llobet J.M., et al., 1998. Baseline levels of PCDD/Fs in vegetation samples collected in the vicinity of a new hazardous waste incinerator in Catalonia, Spain. Chemosphere. 36(12), 2581–2591. https://doi.org/10.1016/S0045-6535(97)10220-X
[8] Schuhmacher M., Domingo J.L., Llobet J.M., et al., 1999. Dioxin and dibenzofuran concentrations in blood of a general population from Tarragona, Spain. Chemosphere. 38(5), 1123–1133. https://doi.org/10.1016/S0045-6535(98)00363-4
[9] Schuhmacher M., Domingo J.L., Llobet J.M., et al., 1999. PCDD/F concentrations in milk of nonoccupationally exposed women living in southern Catalonia, Spain. Chemosphere. 38(5), 995–1004. 10.1016/s0045-6535(98)00359-2
[10] Domingo J.L., Schuhmacher M., Granero S., et al., 1999. PCDDs and PCDFs in food samples from Catalonia, Spain. An assessment of dietary intake. Chemosphere. 38(15), 3517–28. 10.1016/s0045-6535(98)00581-5
[11] Schuhmacher M., Agramunt M.C., Rodriguez-Larena M.C., et al., 2002. Baseline levels of PCDD/Fs in soil and herbage samples collected in the vicinity of a new hazardous waste incinerator in Catalonia, Spain. Chemosphere. 46(9–10), 1343–50. 10.1016/s0045-6535(01)00249-1
[12] Marquès M., Nadal M., Díaz-Ferrero J., et al., 2018. Concentrations of PCDD/Fs in the neighborhood of a hazardous waste incinerator: human health risks. Environmental Science and Pollution Research. 25(26), 26470–26481. 10.1007/s11356-018-2685-8
[13] Schuhmacher M., Rodriguez-Larena M.C., Agramunt M.C., et al., 2002. Environmental impact of a new hazardous waste incinerator in Catalonia, Spain: PCDD/PCDF levels in herbage samples. Chemosphere. 48(2), 187–93. 10.1016/s0045-6535(02)00079-6
[14] Ferré-Huguet N., Nadal M., Schuhmacher M., et al., 2006. Environmental impact and human health risks of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of a new hazardous waste incinerator: a case study. Environmental Science & Technology. 40(1), 61–6. 10.1021/es051630+
[15] Agramunt M.C., Schuhmacher M., Hernandez J.M., et al., 2005. Levels of dioxins and furans in plasma of nonoccupationally exposed subjects living near a hazardous waste incinerator. journal of exposure science & environmental epidemiology. 15(1), 29–34. 10.1038/sj.jea.7500339
[16] Nadal M., Perelló G., Schuhmacher M., et al. 2008. Concentrations of PCDD/PCDFs in plasma of subjects living in the vicinity of a hazardous waste incinerator: follow-up and modeling validation. Chemosphere. 73(6), 901–6. 10.1016/j.chemosphere.2008.07.021
[17] Nadal M., Fàbrega F., Schuhmacher M., et al., 2013. PCDD/Fs in plasma of individuals living near a hazardous waste incinerator. A comparison of measured levels and estimated concentrations by PBPK modeling. Environmental Science & Technology. 47(11), 5971–8. 10.1021/es400498q
[18] Nadal M., Mari M., Schuhmacher M., et al., 2019. Monitoring dioxins and furans in plasma of individuals living near a hazardous waste incinerator: Temporal trend after 20 years. Environmental Research. 173, 207–211. 10.1016/j.envres.2019.03.051
[19] Schuhmacher M., Domingo J.L., Llobet J.M., et al., 1999. Dioxin and dibenzofuran concentrations in adipose tissue of a general population from Tarragona, Spain. Chemosphere. 38(11), 2475–87. 10.1016/s0045-6535(98)00454-8
[20] Schuhmacher M., Domingo J.L., Hagberg J., et al., 2004. PCDD/F and non-ortho PCB concentrations in adipose tissue of individuals living in the vicinity of a hazardous waste incinerator. Chemosphere. 57(5), 357–64. 10.1016/j.chemosphere.2004.05.033
[21] Nadal M., Domingo J.L., García F., et al., 2009. Levels of PCDD/F in adipose tissue on non-occupationally exposed subjects living near a hazardous waste incinerator in Catalonia, Spain. Chemosphere. 74(11), 1471–6. 10.1016/j.chemosphere.2008.11.054.
[22] Schuhmacher M., Fàbrega F., Kumar V., et al., 2014. A PBPK model to estimate PCDD/F levels in adipose tissue: comparison with experimental values of residents near a hazardous waste incinerator. Environment International. 73, 150–7. 10.1016/j.envint.2014.07.020
[23] García F., Barbería E., Torralba P., et al., 2021. Decreasing temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans in adipose tissue from residents near a hazardous waste incinerator. Science of The Total Environment. 751, 141844. 10.1016/j.scitotenv.2020.141844
[24] Schuhmacher M., Domingo J.L., Kiviranta H., et al., 2004. Monitoring dioxins and furans in a population living near a hazardous waste incinerator: levels in breast milk. Chemosphere. 57(1), 43–9. 10.1016/j.chemosphere.2004.05.007
[25] Schuhmacher M., Kiviranta H., Ruokojärvi P., et al., 2009. Concentrations of PCDD/Fs, PCBs and PBDEs in breast milk of women from Catalonia, Spain: a follow-up study. Environment International. 35(3), 607–13. 10.1016/j.envint.2008.12.003
[26] Schuhmacher M., Kiviranta H., Ruokojärvi P., et al., 2013. Levels of PCDD/Fs, PCBs and PBDEs in breast milk of women living in the vicinity of a hazardous waste incinerator: assessment of the temporal trend. Chemosphere. 93(8), 1533–40. 10.1016/j.chemosphere.2013.07.071
[27] Schuhmacher M., Mari M., Nadal M., et al. 2019. Concentrations of dioxins and furans in breast milk of women living near a hazardous waste incinerator in Catalonia, Spain. Environment International. 125, 334–341. 10.1016/j.envint.2019.01.074
[28] Bocio A., Domingo J.L., 2005. Daily intake of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDFs) in foodstuffs consumed in Tarragona, Spain: a review of recent studies (2001–2003) on human PCDD/PCDF exposure through the diet. Environmental Research. 97(1), 1–9. 10.1016/j.envres.2004.01.012
[29] Martí-Cid R., Bocio A., Domingo J.L., 2008. Dietary exposure to PCDD/PCDFs by individuals living near a hazardous waste incinerator in Catalonia, Spain: temporal trend. Chemosphere. 70(9), 1588–95. 10.1016/j.chemosphere.2007.08.017
[30] Domingo J.L., Perelló G., Nadal M., et al., 2012. Dietary intake of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by a population living in the vicinity of a hazardous waste incinerator: assessment of the temporal trend. Environment International. 50, 22–30. 10.1016/j.envint.2012.09.005
[31] González N., Marquès M., Nadal M., et al., 2018. Levels of PCDD/Fs in foodstuffs in Tarragona County (Catalonia, Spain): Spectacular decrease in the dietary intake of PCDD/Fs in the last 20 years. Food and Chemical Toxicology. 121, 109–114. 10.1016/j.fct.2018.08.035
[32] Llobet J.M., Schuhmacher M., Domingo J.L., 2000. Observations on metal trends in soil and vegetation samples collected in the vicinity of a hazardous waste incinerator under construction (1996–1998). Toxicological & Environmental Chemistry. 77(1–2), 119–129. https://doi.org/10.1080/02772240009358942
[33] Nadal M., Bocio A., Schuhmacher M., et al., 2005. Trends in the levels of metals in soils and vegetation samples collected near a hazardous waste incinerator. Archives of Environmental Contamination and Toxicology. 49(3), 290–8. 10.1007/s00244-004-0262-2
[34] Ferré-Huguet N., Nadal M., Mari M., et al., 2007. Monitoring metals near a hazardous waste incinerator. Temporal trend in soils and herbage. Bulletin of Environmental Contamination and Toxicology. 79(2), 130–4. 10.1007/s00128-007-9086-x
[35] Vilavert L., Nadal M., Schuhmacher M., et al., 2012. Concentrations of metals in soils in the neighborhood of a hazardous waste incinerator: assessment of the temporal trends. Biological Trace Element Research. 149(3), 435–42. 10.1007/s12011-012-9441-6
[36] Llobet, J.M., Granero, S., Torres, A., et al., 1998. Biological monitoring of environmental pollution and human exposure to metals in Tarragona, Spain. III. Blood levels. Trace elements and electrolytes, 15, 76–80.
[37] Ferré-Huguet N., Nadal M., Schuhmacher M., et al., 2009. Monitoring metals in blood and hair of the population living near a hazardous waste incinerator: temporal trend. Biological Trace Element Research. 128(3), 191–9. 10.1007/s12011-008-8274-9
[38] Esplugas R., Serra N., Marquès M., et al., 2020. Trace Elements in Blood of the Population Living near a Hazardous Waste Incinerator in Catalonia, Spain. Biological Trace Element Research. 198(1), 37–45. 10.1007/s12011-020-02051-9
[39] Granero, S., Llobet, J.M., Schuhmacher, M., et al., 1998. Biological monitoring of environmental pollution and human exposure to metals in Tarragona, Spain. I. Levels in hair of school children. Trace elements and electrolytes, 15, 39–43.
[40] Nadal M., Bocio A., Schuhmacher M., et al., 2005. Monitoring metals in the population living in the vicinity of a hazardous waste incinerator: levels in hair of school children. Biological Trace Element Research. 104(3), 203–13. 10.1385/BTER:104:3:203
[41] Esplugas R., Mari M., Marquès M., et al., 2019. Biomonitoring of Trace Elements in Hair of Schoolchildren Living Near a Hazardous Waste Incinerator-A 20 Years Follow-Up. Toxics. 7(4), 52. 10.3390/toxics7040052
[42] Llobet, J.M., Granero, S., Schuhmacher, M., et al., 1998. Biological monitoring of environmental pollution and human exposure to metals in Tarragona, Spain. II. Levels in autopsy tissues. Trace elements and electrolytes, 15, 44–49.
[43] Bocio A., Nadal M., Garcia F., et al., 2005. Monitoring metals in the population living in the vicinity of a hazardous waste incinerator: concentrations in autopsy tissues. Biological Trace Element Research. 106(1), 41–50. 10.1385/BTER:106:1:041
[44] Mari M., Nadal M., Schuhmacher M., et al., 2014. Human exposure to metals: levels in autopsy tissues of individuals living near a hazardous waste incinerator. Biological Trace Element Research. 159(1–3), 15–21. 10.1007/s12011-014-9957-z
[45] García F., Marquès M., Barbería E., et al., 2020. Biomonitoring of Trace Elements in Subjects Living Near a Hazardous Waste Incinerator: Concentrations in Autopsy Tissues. Toxics. 8(1), 11. 10.3390/toxics8010011
[46] Llobet, J.M., Granero, S., Schuhmacher, M., et al., 1998. Biological monitoring of environmental pollution and human exposure to metals in Tarragona, Spain. IV. Estimation of the dietary intake. Trace elements and electrolytes, 15, 136–141.
[47] Martí-Cid R., Perelló G., Domingo J.L., 2009. Dietary exposure to metals by individuals living near a hazardous waste incinerator in Catalonia, Spain: temporal trend. Biological Trace Element Research. 131(3), 245–54. 10.1007/s12011-009-8368-z
[48] Giné Bordonaba J., Vilavert L., Nadal M., et al. 2011. Monitoring environmental levels of trace elements near a hazardous waste incinerator: human health risks after a decade of regular operations. Biological Trace Element Research. 144(1–3), 1419–29. 10.1007/s12011-011-9128-4
[49] Vilavert L., Nadal M., Mari M., et al., 2010. Monitoring temporal trends in environmental levels of polychlorinated dibenzo-p-dioxins and dibenzofurans: results from a 10-year surveillance program of a hazardous waste incinerator. Archives of Environmental Contamination and Toxicology. 59(4), 521–31. 10.1007/s00244-010-9523-4
[50] Nadal M., García F., Schuhmacher M., et al., 2019. Metals in biological tissues of the population living near a hazardous waste incinerator in Catalonia, Spain: Two decades of follow-up. Environmental Research. 176, 108578. 10.1016/j.envres.2019.108578
[51] Ukwin (United Kingdom Without Incineration Network), 2023. Incinerators & Health: Fact or Fiction? November 2023. Available at: https://ukwin.org.uk/files/pdf/UKWIN-Health-Briefing-November-2023.pdf. (Accessed March 1, 2025).
[52] Zero Waste Europe, 2024. Emissions reality check: the crucial role of biomonitoring in understanding the real impact of waste incinerators. Janek Vahk, Dorota Napierska, May 2024. Available from: https://zerowasteeurope.eu/2024/05/emissions-reality-check-biomonitoring-waste-incineration-emissions/ (Accessed March 1, 2025).
[53] García-Pérez J., Fernández-Navarro P., Castelló A., et al., 2013. Cancer mortality in towns in the vicinity of incinerators and installations for the recovery or disposal of hazardous waste. Environment International. 51, 31–44. 10.1016/j.envint.2012.10.003
[54] Negri E., Bravi F., Catalani S., et al., 2020. Health effects of living near an incinerator: A systematic review of epidemiological studies, with focus on last generation plants. Environmental Research. 184, 109305. 10.1016/j.envres.2020.109305
[55] Bolan S., Padhye L.P., Jasemizad T., et al., 2024. Impacts of climate change on the fate of contaminants through extreme weather events. Science of The Total Environment. 909, 168388. 10.1016/j.scitotenv.2023.168388
[56] Thuy Nguyen T.T., Vuong T.X., Ha Pham T.T., et al., 2024. Insight into heavy metal chemical fractions in ash collected from municipal and industrial waste incinerators in northern Vietnam. RSC Advances. 14(23), 16486–16500. 10.1039/d4ra01465k
[57] Steckling N., Gotti A., Bose-O'Reilly S., et al., 2018. Biomarkers of exposure in environment-wide association studies - Opportunities to decode the exposome using human biomonitoring data. Environmental Research. 164, 597–624. https://doi.org/10.1016/j.envres.2018.02.041
[58] Vorkamp K., Castaño A., Antignac J.P., et al., 2021. Biomarkers, matrices and analytical methods targeting human exposure to chemicals selected for a European human biomonitoring initiative. Environment International. 146, 106082. https://doi.org/10.1016/j.envint.2020.106082
[59] Gupta K., Pullokaran D., Phuleria H.C., 2020. Health risk assessment of human exposure to heavy metal using hair and nail as biosamples. ISEE Conference Abstracts. 2020(1). https://doi.org/10.1289/isee.2020.virtual.P-049
[60] He F., Wang F., Peng Y., et al., 2023. Insight into the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in hazardous waste incineration and incinerators: Formation process and reduction strategy. Journal of Environmental Management. 345, 118669. https://doi.org/10.1016/j.jenvman.2023.118669
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Jose L. Domingo, Joaquim Rovira, Marta Schuhmacher

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.