-
1220
-
1026
-
962
-
574
-
449
Cellulose Acetate Reverse Osmosis Membranes for Desalination: A Short Review
DOI:
https://doi.org/10.30564/omms.v1i2.1143Abstract
Freshwater scarcity is a critical challenge that human society has to face in the 21st century. Desalination of seawater by reverse osmosis (RO) membranes was regarded as the most promising technology to overcome the challenge given that plenty of potential fresh water resources in oceans. However, the requirements for high desalination efficiency in terms of permeation flux and rejection rate become the bottle-neck which needs to be broken down by developing novel RO membranes with new structure and composition. Cellulose acetate RO membranes exhibited long durability, chlorine resistance, and outstanding desalination efficiency that are worthy of being recalled to address the current shortcomings brought by polyamide RO membranes. In terms of performance enhancement, it is also important to use new ideas and to develop new strategies to modify cellulose acetate RO membranes in response to those complex challenges. Therefore, we focused on the state of the art cellulose acetate RO membranes and discussed the strategies on membrane structural manipulation adjusted by either phase separation or additives, which offered anti-fouling, anti-bacterial, anti-chlorine, durability, and thermo-mechanical properties to the modified membranes associated with the desalination performance, i.e., permeation flux and rejection rate. The relationship between membrane structure and desalination efficiency was investigated and established to guide the development of cellulose acetate RO membranes for desalination.
Keywords:
Cellulose acetate; Reverse osmosis membrane; Composition; DesalinationReferences
[1] M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: A state-of-the-art review, Desalination. 2019, 459: 59–104.
[2] DOI: 10.1016/j.desal.2019.02.008
[3] M. Elimelech, W.A. Phillip, The Future of Seawater Desalination: Energy, Technology, and the Environment, Science. 2011, 333: 712–717.
[4] DOI: 10.1126/science.1200488
[5] S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology: Developments and challenges, Desalination. 2015, 368: 10–26.
[6] DOI: 10.1016/j.desal.2014.12.042
[7] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—Development to date and future potential, J. Membr. Sci. 2011, 370: 1–22.
[8] DOI: 10.1016/j.memsci.2010.12.036
[9] K.C. Khulbe, T. Matsuura, Recent Progresses in Preparation and Characterization of RO Membranes, J. Membr. Sci. Res., 2016.
[10] DOI: 10.22079/jmsr.2016.22147
[11] A. Giwa, N. Akther, V. Dufour, S.W. Hasan, A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis, RSC Adv. 2016, 6: 8134–8163.
[12] DOI: 10.1039/C5RA17221G
[13] M. Bassyouni, M.H. Abdel-Aziz, M.Sh. Zoromba, S.M.S. Abdel-Hamid, E. Drioli, A review of polymeric nanocomposite membranes for water purification, J. Ind. Eng. Chem. 2019, 73: 19–46.
[14] DOI: 10.1016/j.jiec.2019.01.045
[15] H. Ma, B.S. Hsiao, Electrospun Nanofibrous Membranes for Desalination, in: Curr. Trends Future Dev. Bio- Membr., Elsevier, 2019: 81–104.
[16] DOI: 10.1016/B978-0-12-813551-8.00004-8
[17] S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology: Developments and challenges, Desalination. 2015, 368: 10–26.
[18] DOI: 10.1016/j.desal.2014.12.042
[19] S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology: Developments and challenges, Desalination. 2015, 368: 10–26.
[20] DOI: 10.1016/j.desal.2014.12.042
[21] M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: A state-of-the-art review, Desalination. 2019, 459: 59–104.
[22] DOI: 10.1016/j.desal.2019.02.008
[23] H. Choi, S.H. Yoon, M. Son, E. Celik, H. Park, H. Choi, Efficacy of synthesis conditions on functionalized carbon nanotube blended cellulose acetate membrane for desalination, Desalination Water Treat. 2016, 57: 7545–7554.
[24] DOI: 10.1080/19443994.2015.1025582
[25] A. Ahmad, F. Jamshed, T. Riaz, S.- Gul, S. Waheed, A. Sabir, A.A. AlAnezi, M. Adrees, T. Jamil, Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination, Carbohydr. Polym. 2016, 149: 207–216.
[26] DOI: 10.1016/j.carbpol.2016.04.104
[27] S.B. Khan, K.A. Alamry, E.N. Bifari, A.M. Asiri, M. Yasir, L. Gzara, R.Z. Ahmad, Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection, J. Ind. Eng. Chem. 2015, 24: 266–275.
[28] DOI: 10.1016/j.jiec.2014.09.040
[29] H. Abdallah, M.S. Shalaby, A. El-gendi, A.M. Shaban, B.-K. Zhu, Effectiveness of a coagulation step and polyester support on blend polyvinylchloride membrane formation and performance, J. Polym. Eng. 2019, 39: 351–359.
[30] DOI: 10.1515/polyeng-2018-0387
[31] Y. Shi, C. Li, D. He, L. Shen, N. Bao, Preparation of graphene oxide–cellulose acetate nanocomposite membrane for high-flux desalination, J. Mater. Sci. 2017, 52: 13296–13306.
[32] DOI: 10.1007/s10853-017-1403-0
[33] A. Ahmad, S. Waheed, S.M. Khan, S. e-Gul, M. Shafiq, M. Farooq, K. Sanaullah, T. Jamil, Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis, Desalination. 2015, 355: 1–10.
[34] DOI: 10.1016/j.desal.2014.10.004
[35] C. Sprick, S. Chede, V. Oyanedel-Craver, I.C. Escobar, Bio-inspired immobilization of casein-coated silver nanoparticles on cellulose acetate membranes for biofouling control, J. Environ. Chem. Eng. 2018, 6: 2480–2491.
[36] DOI: 10.1016/j.jece.2018.03.044
[37] S. Chede, N.M. Anaya, V. Oyanedel-Craver, S. Gorgannejad, T.A.L. Harris, J. Al-Mallahi, M. Abu-Dalo, H.A. Qdais, I.C. Escobar, Desalination using low biofouling nanocomposite membranes: From batch-scale to continuous-scale membrane fabrication, Desalination. 2019, 451: 81–91.
[38] DOI: 10.1016/j.desal.2017.05.007
[39] G. Kang, Y. Cao, Development of antifouling reverse osmosis membranes for water treatment: A review, Water Res. 2012, 46: 584–600.
[40] DOI: 10.1016/j.watres.2011.11.041
[41] A. Ahmad, S. Waheed, S.M. Khan, S. e-Gul, M. Shafiq, M. Farooq, K. Sanaullah, T. Jamil, Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis, Desalination. 2015, 355:1–10.
[42] DOI: 10.1016/j.desal.2014.10.004
[43] H. Abdallah, M.S. Shalaby, A. El-gendi, A.M. Shaban, B.-K. Zhu, Effectiveness of a coagulation step and polyester support on blend polyvinylchloride membrane formation and performance, J. Polym. Eng. 2019, 39: 351–359.
[44] DOI: 10.1515/polyeng-2018-0387
[45] H. Choi, S.H. Yoon, M. Son, E. Celik, H. Park, H. Choi, Efficacy of synthesis conditions on functionalized carbon nanotube blended cellulose acetate membrane for desalination, Desalination Water Treat. 2016, 57: 7545–7554.
[46] DOI: 10.1080/19443994.2015.1025582
[47] D. Sachit, J. Veenstra, Foulant Analysis of Three RO Membranes Used in Treating Simulated Brackish Water of the Iraqi Marshes, Membranes. 2017, 7: 23.
[48] DOI: 10.3390/membranes7020023
[49] D.E. Abd-El-Khalek, B.A. Abd-El-Nabey, A. Morsy, Sh. Ebrahim, S.R. Ramadan Improvement of performance and antifouling properties of reverse osmosis membranes using green additive 65 71 10.5004/dwt.2019.23481, D.E. Abd-El-Khalek, B.A. Abd-El-Nabey, A. Morsy, Sh. Ebrahim, S.R. Ramadan, Improvement of performance and antifouling properties of reverse osmosis membranes using green additive, DESALINATION WATER Treat. 2019, 142: 65–71.
[50] DOI: 10.5004/dwt.2019.23481
[51] C.H. Worthley, K.T. Constantopoulos, M. Ginic-Markovic, R.J. Pillar, J.G. Matisons, S. Clarke, Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance, J. Membr. Sci. 2011, 385–386: 30–39.
[52] DOI: 10.1016/j.memsci.2011.09.017
[53] A. El-Gendi, F.A. Samhan, N. Ismail, L.A.N. El-Dein, Synergistic role of Ag nanoparticles and Cu nanorods dispersed on graphene on membrane desalination and biofouling, J. Ind. Eng. Chem. 2018, 65: 127–136.
[54] DOI: 10.1016/j.jiec.2018.04.021
[55] S.B. Khan, K.A. Alamry, E.N. Bifari, A.M. Asiri, M. Yasir, L. Gzara, R.Z. Ahmad, Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection, J. Ind. Eng. Chem. 2015, 24: 266–275.
[56] DOI: 10.1016/j.jiec.2014.09.040
[57] C. Sprick, S. Chede, V. Oyanedel-Craver, I.C. Escobar, Bio-inspired immobilization of casein-coated silver nanoparticles on cellulose acetate membranes for biofouling control, J. Environ. Chem. Eng. 2018, 6: 2480–2491.
[58] DOI: 10.1016/j.jece.2018.03.044
[59] M. Shafiq, A. Sabir, A. Islam, S.M. Khan, N. Gull, S.N. Hussain, M.T.Z. Butt, Cellulaose acetate based thin film nanocomposite reverse osmosis membrane incorporated with TiO2 nanoparticles for improved performance, Carbohydr. Polym. 2018, 186: 367–376.
[60] DOI: 10.1016/j.carbpol.2018.01.070
[61] A.F. de Faria, A.C.M. de Moraes, P.F. Andrade, D.S. da Silva, M. do Carmo Gonçalves, O.L. Alves, Cellulose acetate membrane embedded with graphene oxide-silver nanocomposites and its ability to suppress microbial proliferation, Cellulose. 2017, 24: 781–796.
[62] DOI: 10.1007/s10570-016-1140-6
[63] S. Chede, N.M. Anaya, V. Oyanedel-Craver, S. Gorgannejad, T.A.L. Harris, J. Al-Mallahi, M. Abu-Dalo, H.A. Qdais, I.C. Escobar, Desalination using low biofouling nanocomposite membranes: From batch-scale to continuous-scale membrane fabrication, Desalination. 2019, 451: 81–91.
[64] DOI: 10.1016/j.desal.2017.05.007
[65] P. Fei, L. Liao, J. Meng, B. Cheng, X. Hu, J. Song, Non-leaching antibacterial cellulose triacetate reverse osmosis membrane via covalent immobilization of quaternary ammonium cations, Carbohydr. Polym. 2018, 181: 1102–1111.
[66] DOI: 10.1016/j.carbpol.2017.11.036
[67] A.L. Ohland, V.M.M. Salim, C.P. Borges, Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes, Desalination. 2019, 452: 87–93.
[68] DOI: 10.1016/j.desal.2018.11.008
[69] A. Ahmad, F. Jamshed, T. Riaz, S.- Gul, S. Waheed, A. Sabir, A.A. AlAnezi, M. Adrees, T. Jamil, Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination, Carbohydr. Polym. 2016, 149: 207–216.
[70] DOI: 10.1016/j.carbpol.2016.04.104
[71] A. El-Gendi, F.A. Samhan, N. Ismail, L.A.N. El-Dein, Synergistic role of Ag nanoparticles and Cu nanorods dispersed on graphene on membrane desalination and biofouling, J. Ind. Eng. Chem. 2018, 65: 127–136.
[72] DOI: 10.1016/j.jiec.2018.04.021
[73] P. Fei, L. Liao, J. Meng, B. Cheng, X. Hu, J. Song, Synthesis, characterization and antibacterial properties of reverse osmosis membranes from cellulose bromoacetate, Cellulose. 2018, 25: 5967–5984.
[74] DOI: 10.1007/s10570-018-1990-1
[75] Sabad-e-Gul, S. Waheed, A. Ahmad, S.M. Khan, M. Hussain, T. Jamil, M. Zuber, Synthesis, characterization and permeation performance of cellulose acetate/polyethylene glycol-600 membranes loaded with silver particles for ultra low pressure reverse osmosis, J. Taiwan Inst. Chem. Eng. 2015, 57: 129–138.
[76] DOI: 10.1016/j.jtice.2015.05.024
[77] M. Wasim, A. Sabir, M. Shafiq, A. Islam, T. Jamil, Preparation and characterization of composite membrane via layer by layer assembly for desalination, Appl. Surf. Sci. 2017, 396 : 259–268.
[78] DOI: 10.1016/j.apsusc.2016.10.098
[79] A. Sabir, M. Shafiq, A. Islam, F. Jabeen, A. Shafeeq, A. Ahmad, M.T. Zahid Butt, K.I. Jacob, T. Jamil, Conjugation of silica nanoparticles with cellulose acetate / polyethylene glycol 300 membrane for reverse osmosis using MgSO 4 solution, Carbohydr. Polym. 2016, 136: 551–559.
[80] DOI: 10.1016/j.carbpol.2015.09.042
[81] S. Chede, N.M. Anaya, V. Oyanedel-Craver, S. Gorgannejad, T.A.L. Harris, J. Al-Mallahi, M. Abu-Dalo, H.A. Qdais, I.C. Escobar, Desalination using low biofouling nanocomposite membranes: From batch-scale to continuous-scale membrane fabrication, Desalination. 2019, 451: 81–91.
[82] DOI: 10.1016/j.desal.2017.05.007
[83] S.M. Ghaseminezhad, M. Barikani, M. Salehirad, Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination, Compos. Part B Eng. 2019, 161: 320–327.
[84] DOI: 10.1016/j.compositesb.2018.10.079
[85] A. Ahmad, S. Waheed, S.M. Khan, S. e-Gul, M. Shafiq, M. Farooq, K. Sanaullah, T. Jamil, Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis, Desalination. 2015, 355: 1–10.
[86] DOI: 10.1016/j.desal.2014.10.004
[87] H. Abdallah, M.S. Shalaby, A. El-gendi, A.M. Shaban, B.-K. Zhu, Effectiveness of a coagulation step and polyester support on blend polyvinylchloride membrane formation and performance, J. Polym. Eng. 2019, 39: 351–359.
[88] DOI: 10.1515/polyeng-2018-0387
[89] K. Chen, C. Xiao, Q. Huang, H. Liu, Y. Tang, Fabrication and properties of graphene oxide-embedded cellulose triacetate RO composite membrane via melting method, Desalination. 2018, 425: 75–184.
[90] DOI: 10.1016/j.desal.2017.10.004
[91] A. Sabir, M. Shafiq, A. Islam, A. Sarwar, M.R. Dilshad, A. Shafeeq, M.T. Zahid Butt, T. Jamil, Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis, Carbohydr. Polym. 2015, 132: 589–597.
[92] DOI: 10.1016/j.carbpol.2015.06.035
[93] H. Abdallah, A. El Gendi, M.S. Shalaby, A. Amin, M. El-Bayoumi, A.M. Shaban, Influence of cellulose acetate polymer proportion on the fabrication of polyvinylchloride reverse osmosis blend membrane, experimental design, DESALINATION WATER Treat. 2018, 116: 29–38.
[94] DOI: 10.5004/dwt.2018.22306
[95] A. El-Gendi, H. Abdallah, A. Amin, S.K. Amin, Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination, J. Mol. Struct. 2017, 1146: 14–22.
[96] DOI: 10.1016/j.molstruc.2017.05.122
[97] A. Sabir, A. Islam, M. Shafiq, A. Shafeeq, M.T.Z. Butt, N.M. Ahmad, K. Sanaullah, T. Jamil, Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination, Desalination. 2015, 368: 159–170.
[98] DOI: 10.1016/j.desal.2014.12.041
[99] S. Loeb, S. Sourirajan, Sea Water Demineralization by Means of an Osmotic Membrane, in: Saline Water Conversion—II, AMERICAN CHEMICAL SOCIETY, WASHINGTON, D. C., 1963: 117–132.
[100] DOI: 10.1021/ba-1963-0038.ch009
[101] H. Strathmann, P. Scheible, R.W. Baker, A rationale for the preparation of Loeb-Sourirajan-type cellulose acetate membranes, J. Appl. Polym. Sci. 1971, 15: 811–828. DOI: 10.1002/app.1971.070150404
[102] R. Pilon, B. Kunst, S. Sourirajan, Studies on the development of improved reverse osmosis membranes from cellulose acetate–acetone–formamide casting solutions, J. Appl. Polym. Sci. 1971, 15: 1317–1334.
[103] DOI: 10.1002/app.1971.070150603
[104] A.K. Ghosh, K.K. Sirkar, Low-pressure reverse osmosis desalination with improved cellulose acetate membranes, J. Appl. Polym. Sci. 1979, 23: 1291–1307.
[105] DOI: 10.1002/app.1979.070230503
[106] S. Manjikian, Desalination Membranes from Organic Casting Solutions, Ind. Eng. Chem. Prod. Res. Dev. 1967, 6: 23–32.
[107] DOI: 10.1021/i360021a004
[108] B. Kunst, S. Sourirajan, Development and performance of some porous cellulose acetate membranes for reverse osmosis desalination, J. Appl. Polym. Sci. 1970, 14: 2559–2568.
[109] DOI: 10.1002/app.1970.070141011
[110] Sh. Ebrahim, A. Mosry, E. Kanawy, T. Abdel-Fattah, S. Kandil, Reverse osmosis membranes for water desalination based on cellulose acetate extracted from Egyptian rice straw, Desalination Water Treat. 2015: 1–11.
[111] DOI: 10.1080/19443994.2015.1110052
[112] A.P. Duarte, M.T. Cidade, J.C. Bordado, Cellulose acetate reverse osmosis membranes: Optimization of the composition, J. Appl. Polym. Sci. 2006, 100: 4052–4058.
[113] DOI: 10.1002/app.23237
[114] A.P. Duarte, J.C. Bordado, M.T. Cidade, Influence to the performance of cellulose acetate reverse osmosis membranes by fibers addition, J. Appl. Polym. Sci. 2008, 109: 2321–2328.
[115] DOI:10.1002/app.28319
[116] L. Pageau, S. Sourirajan, Improvement of porous cellulose acetate reverse osmosis membranes by change of casting conditions, J. Appl. Polym. Sci. 1972, 16: 3185–3206.
[117] DOI: 10.1002/app.1972.070161212
[118] B. Kunst, S. Sourirajan, Performance of some improved porous cellulose acetate membranes for low pressure reverse osmosis desalination, Desalination. 1970, 8: 139–152.
[119] DOI: 10.1016/S0011-9164(00)82018-4
[120] A.P. Duarte, J.C. Bordado, M.T. Cidade, Cellulose acetate reverse osmosis membranes: Optimization of preparation parameters, J. Appl. Polym. Sci. 2007, 103: 134–139.
[121] DOI: 10.1002/app.24837
[122] J.D. Nirmal, V.P. Pandya, N.V. Desai, R. Rangarajan, Cellulose Triacetate Membrane for Applications in Plating, Fertilizer, and Textile Dye Industry Wastes, Sep. Sci. Technol. 1992, 27: 2083–2098.
[123] DOI: 10.1080/01496399208019467
[124] H. Zhang, G.M. Geise, Modeling the water permeability and water/salt selectivity tradeoff in polymer membranes, J. Membr. Sci. 2016, 520: 790–800.
[125] DOI: 10.1016/j.memsci.2016.08.035
[126] H. Ma, C. Burger, B.S. Hsiao, B. Chu, Highly Permeable Polymer Membranes Containing Directed Channels for Water Purification, ACS Macro Lett. 2012, 1: 723–726.
[127] DOI: 10.1021/mz300163h
[128] K. Chen, C. Xiao, Q. Huang, H. Liu, Y. Tang, Fabrication and properties of graphene oxide-embedded cellulose triacetate RO composite membrane via melting method, Desalination. 2018, 425: 175–184.
[129] DOI: 10.1016/j.desal.2017.10.004
[130] Sabad-e-Gul, S. Waheed, A. Ahmad, S.M. Khan, M. Hussain, T. Jamil, M. Zuber, Synthesis, characterization and permeation performance of cellulose acetate/polyethylene glycol-600 membranes loaded with silver particles for ultra low pressure reverse osmosis, J. Taiwan Inst. Chem. Eng. 2015, 57: 129–138.
[131] DOI: 10.1016/j.jtice.2015.05.024
[132] M. Shafiq, A. Sabir, A. Islam, S.M. Khan, N. Gull, S.N. Hussain, M.T.Z. Butt, Cellulaose acetate based thin film nanocomposite reverse osmosis membrane incorporated with TiO2 nanoparticles for improved performance, Carbohydr. Polym. 2018, 186: 367–376.
[133] DOI: 10.1016/j.carbpol.2018.01.070
[134] C. Sprick, S. Chede, V. Oyanedel-Craver, I.C. Escobar, Bio-inspired immobilization of casein-coated silver nanoparticles on cellulose acetate membranes for biofouling control, J. Environ. Chem. Eng. 2018, 6: 2480–2491.
[135] DOI: 10.1016/j.jece.2018.03.044
[136] A. El-Gendi, F.A. Samhan, N. Ismail, L.A.N. El-Dein, Synergistic role of Ag nanoparticles and Cu nanorods dispersed on graphene on membrane desalination and biofouling, J. Ind. Eng. Chem. 2018, 65: 127–136.
[137] DOI: 10.1016/j.jiec.2018.04.021
[138] A.F. de Faria, A.C.M. de Moraes, P.F. Andrade, D.S. da Silva, M. do Carmo Gonçalves, O.L. Alves, Cellulose acetate membrane embedded with graphene oxide-silver nanocomposites and its ability to suppress microbial proliferation, Cellulose. 2017, 24: 781–796.
[139] DOI: 10.1007/s10570-016-1140-6
[140] A.L. Ohland, V.M.M. Salim, C.P. Borges, Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes, Desalination. 2019, 452: 87–93.
[141] DOI: 10.1016/j.desal.2018.11.008
[142] P. Fei, L. Liao, J. Meng, B. Cheng, X. Hu, J. Song, Non-leaching antibacterial cellulose triacetate reverse osmosis membrane via covalent immobilization of quaternary ammonium cations, Carbohydr. Polym. 2018, 181: 1102–1111.
[143] DOI: 10.1016/j.carbpol.2017.11.036
[144] P. Fei, L. Liao, J. Meng, B. Cheng, X. Hu, J. Song, Synthesis, characterization and antibacterial properties of reverse osmosis membranes from cellulose bromoacetate, Cellulose. 2018, 25: 5967–5984.
[145] DOI: 10.1007/s10570-018-1990-1
[146] F. Li, P. Fei, B. Cheng, J. Meng, L. Liao, Synthesis, characterization and excellent antibacterial property of cellulose acetate reverse osmosis membrane via a two-step reaction, Carbohydr. Polym. 216: 312–321.
[147] DOI: 10.1016/j.carbpol.2019.04.026
[148] A. Ahmad, S. Waheed, S.M. Khan, S. e-Gul, M. Shafiq, M. Farooq, K. Sanaullah, T. Jamil, Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis, Desalination. 2015, 355: 1–10.
[149] DOI: 10.1016/j.desal.2014.10.004
[150] S. Chede, N.M. Anaya, V. Oyanedel-Craver, S. Gorgannejad, T.A.L. Harris, J. Al-Mallahi, M. Abu-Dalo, H.A. Qdais, I.C. Escobar, Desalination using low biofouling nanocomposite membranes: From batch-scale to continuous-scale membrane fabrication, Desalination. 2019, 451: 81–91.
[151] DOI:10.1016/j.desal.2017.05.007
[152] A. Morsy, S. Ebrahim, E.-R. Kenawy, T. Abdel-Fattah, S. Kandil, Grafted cellulose acetate reverse osmosis membrane using 2-acrylamido-2-methylpropanesulfonic acid for water desalination, Water Sci. Technol. Water Supply. 2016, 16: 1046–1056.
[153] DOI: 10.2166/ws.2016.025
[154] C.H. Worthley, K.T. Constantopoulos, M. Ginic-Markovic, R.J. Pillar, J.G. Matisons, S. Clarke, Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance, J. Membr. Sci. 2011, 385–386: 30–39.
[155] DOI: 10.1016/j.memsci.2011.09.017
[156] D. Sachit, J. Veenstra, Foulant Analysis of Three RO Membranes Used in Treating Simulated Brackish Water of the Iraqi Marshes, Membranes. 2017, 7: 23.
[157] DOI: 10.3390/membranes7020023
[158] S.M. Ghaseminezhad, M. Barikani, M. Salehirad, Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination, Compos. Part B Eng. 2019, 161: 320–327.
[159] DOI: 10.1016/j.compositesb.2018.10.079
[160] A. El-Gendi, H. Abdallah, A. Amin, S.K. Amin, Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination, J. Mol. Struct. 2017, 1146: 14–22.
[161] DOI: 10.1016/j.molstruc.2017.05.122
[162] H. Abdallah, A. El Gendi, M.S. Shalaby, A. Amin, M. El-Bayoumi, A.M. Shaban, Influence of cellulose acetate polymer proportion on the fabrication of polyvinylchloride reverse osmosis blend membrane, experimental design, Desalination and Water Treat. 2018, 116: 29–38.
[163] DOI: 10.5004/dwt.2018.22306
[164] A. Sabir, M. Shafiq, A. Islam, A. Sarwar, M.R. Dilshad, A. Shafeeq, M.T. Zahid Butt, T. Jamil, Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis, Carbohydr. Polym. 2015, 132: 589–597.
[165] DOI: 10.1016/j.carbpol.2015.06.035
[166] A. Sabir, M. Shafiq, A. Islam, F. Jabeen, A. Shafeeq, A. Ahmad, M.T. Zahid Butt, K.I. Jacob, T. Jamil, Conjugation of silica nanoparticles with cellulose acetate/polyethylene glycol 300 membrane for reverse osmosis using MgSO 4 solution, Carbohydr. Polym. 2016, 136: 551–559.
[167] DOI: 10.1016/j.carbpol.2015.09.042
[168] A. Sabir, A. Islam, M. Shafiq, A. Shafeeq, M.T.Z. Butt, N.M. Ahmad, K. Sanaullah, T. Jamil, Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination, Desalination. 2015, 368: 159–170.
[169] DOI: 10.1016/j.desal.2014.12.041
[170] G. Kang, Y. Cao, Development of antifouling reverse osmosis membranes for water treatment: A review, Water Res. 2012, 46: 584–600.
[171] DOI: 10.1016/j.watres.2011.11.041
[172] B.S. Thaçi, S.T. Gashi, The Heterogeneous Reverse Osmosis Membranes Based Separation of Fluorides with Fly Ash Pretreatment, Acta Phys. Pol. A. 2015, 128: B-62-B-67.
[173] DOI: 10.12693/APhysPolA.128.B-62
[174] B. Thaçi, S. Gashi, N. Daci, M. Daci, A. Dylhasi, Effect of modified coal through chemical activation process on performance of heterogeneous reverse osmosis membranes, Environment Protection Engineering, 2015, 14: 1.
[175] DOI: 10.5277/epe150105
[176] D.H.N. Perera, S.K. Nataraj, N.M. Thomson, A. Sepe, S. Hüttner, U. Steiner, H. Qiblawey, E. Sivaniah, Room-temperature development of thin film composite reverse osmosis membranes from cellulose acetate with antibacterial properties, J. Membr. Sci. 2014, 453: 212–220.
[177] DOI: 10.1016/j.memsci.2013.10.062