High Energy X-Ray Dosimetry Using (ZnO)0.2(TeO2)0.8 Thin Filmbased Real-time X-Ray Sensor


  • M. M. Idris Department of Physics, Federal University of Technology, P.M.B 65, Minna, Nigeria Department of Physics, Nasarawa State University, P.M.B 1022, Keffi, Nigeria Department of Physics, University Putra, 43400, Malaysia
  • I. O. Olarinoye Department of Physics, Federal University of Technology, P.M.B 65, Minna, Nigeria
  • M. T. Kolo Department of Physics, Federal University of Technology, P.M.B 65, Minna, Nigeria
  • S. O. Ibrahim Department of Physics, Federal University of Technology, P.M.B 65, Minna, Nigeria
  • J. K. Audu Department of Medical Physics and Radiotherapy, National Hospital, P.M.B 425, Abuja, Nigeria




This study reports the dosimetric response of a (ZnO)0.2(TeO2)0.8 thin film sensor irradiated with high-energy X-ray radiation at various doses. The spray pyrolysis method was used for the film deposition on soda-lime glass substrate using zinc acetate dehydrate and tellurium dioxide powder as the starting precursors. The structural and morphological properties of the film were determined. The I-V characteristics measurements were performed during irradiation with a 6 MV X-ray beam from a Linac. The results revealed that the XRD pattern of the AS-deposited thin film is non-crystalline (amorphous) in nature. The FESEM image shows the non-uniform shape of nanoparticles agglomerated separately, and the EDX spectrum shows the presence of Te, Zn, and O in the film. The I-V characteristics measurements indicate that the current density increases linearly with X-ray doses (0-250 cGy) for all applied voltages (1-6 V). The sensitivity of the thin film sensor has been found to be in the range of 0.37-0.94 mA/cm2 /Gy. The current-voltage measurement test for fading normalised in percentage to day 0 was found in the order of day 0 > day 15 > day 30 > day 1 > day 2. These results are expected to be beneficial for fabricating cheap and practical X-ray sensors.


Thin film; X- ray radiation; I-V characteristics; Dosimetry


[1] Yahaya, I., Mundi, A.A., Mustapha, I.M., et al., 2019. Evaluation of concentration of copper, lead, and zinc in different brands of cigarette sold in Keffi main market of Nasarawa State, Nigeria. Asian Journal of Advance Research and Reports. 4, 1-7. doi: 10.9734/ajarr/2019/ v4i430119.

[2] Nie, Y., Xie, Y., Zheng, Y., et al., 2021. Preparation of ZnO/Bi2O3 composites as heterogeneous thin film materials with high photoelectric performance on FTO base. Journal of Coatings. 11(9). doi: 10.3390/coatings11091140.

[3] Younus, I.A., Ezzat, A.M., Uonis, M.M., 2021. Preparation of ZnTe thin films using chemical bath deposition technique. Journal of Nanocomposites. 6(4), 165-172. doi: 10.1080/20550324.2020.1865712.

[4] Idris, M.M., Ubaidullah, A., Sulayman, M.B., et al., 2021. Assessment of gamma background exposure levels in some selected residential houses in FCT Abuja , Nigeria. Journal of Radiation and Nuclear Application. 254(3), 251-254.

[5] Edrine, T., Muhammad, D., Ahmad, N.S.Y., et al., 2019. A review: Photonic devices used for dosimetry in medical radiation. Journal of Sensors. 19(1), 2226.

[6] Muchuweni, E., Sathiaraj, T.S., Nyakotyo, H., 2017. Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Journal of Heliyon. 3(4), e00285. doi: 10.1016/ j.heliyon.2017.e00285.

[7] Idris, M.M., Olarinoye, I.O., Kolo, M.T., et al., 2022. Transparent conducting oxides thin film dosimetry: Present and the future. Journal of Radiation and Nuclear Application. 7(1), 49-58.

[8] Chen, Y. (editor), 2018. Review of ZnO transparent conducting oxides for solar applications. IOP Conference Series on Material Science and Engineering; 2018 May 25-27; Nanchang, China; UK: IOP Publishing. doi: 10.1088/1757- 899X/423/1/012170.

[9] de Godoy, M.P.F., de Herval, L.K.S., Cotta, A.A.C., et al., 2020. ZnO thin films design: Therole of precursor molarity in the spray pyrolysis process. Journal of Material Science: Material in Electronics. 31(20), 17269-17280. doi: 10.1007/ s10854-020-04281-y.

[10] Robertson, J., Falabretti, B., 2011. Electronic structure of transparent conducting oxides, 6th ed. Springer US: Boston.

[11] Ilin, E., 2014. Study of the synthesis machanisms and optical properties of ZnO nanomaterials obtained by supercritical fluids route [HAL thesis]. France: Université de Bordeaux.

[12] Eskalen, H., Kavun, Y., Kerli, S., et al., 2020. An investigation of radiation shielding properties of boron doped ZnO thin films. Journal of Optical Materials. 105, 109871. doi: 10.1016/ j.optmat.2020.109871.

[13] Khan, Z.R., Khan, M.S., Zulfequar, M., et al., 2011. Optical and structural properties of ZnO thin films fabricated by Sol-Gel method. Journal of Material Sciences and Applications. 2(5), 340-345. doi: 10.4236/msa.2011.25044.

[14] Kariper, A., 2019. Crystalline TeO2 thin film with chemical bath deposition. Indian Journal of Pure and Applied Physics. 57(3), 175-179.

[15] Bontempo, L., Dos Santos Filho, S.G., Kassab, L.R.P., 2020. Process oxygen flow influence on the structural properties of thin films obtained by co-sputtering of (TeO2)x-ZnO and Au onto Si substrates. Journal of Nanomaterials. 10(9), 1-16. doi: 10.3390/nano10091863.

[16] Sudha, A., Maity, T.K., Sharma, S.L., et al., 2018. An extensive study on the structural evolution and gamma radiation stability of TeO2 thin films. Journal of Material Science in Semicondor Processing. 74, 347-351. doi: 10.1016/ j.mssp.2017.10.018.

[17] Nistor, M., Rougier, A., 2011. Low temperature Si doped ZnO thin films for transparent conducting oxides. Journal of Solar Energy Materials and Solar Cells. 95, 2357-2362. doi: 10.1016/ j.solmat.2011.04.006.

[18] Manzi, J.A., 2016. Zinc precursor synthesis and the aerosol assisted chemical vapour deposition of zinc oxide thin films [PhD thesis]. London: Department of Chemistry University College London Christopher Ingold Laboratories.

[19] Kariper, I.A., 2019. Crystalline TeO2 thin film with chemical bath deposition. Indian Journal of Pure and Applied Physics. 57(2), 411-419. doi: 10.1007/s00339-021-04344-9.

[20] Bhat, J.S., Maddani, K.I., Karguppikar, A.M., et al., 2007. Electron beam radiation effects on electrical and optical properties of pure and aluminum doped tin oxide films. Journal of Nucear Instruments and Methods in Physics Research B. 258, 369-374. doi: 10.1016/j.nimb.2007.02.074.

[21] Paquin, F., Rivnay, J., Salleo, A., et al., 2015. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. Journal of Material Chemistry C. 3, 10715-10722. doi: 10.1039/b000000x.

[22] Arockiam, C.J., Ananthanarayanan, R., Srinivasan, P., et al., 2021. Room temperature selective sensing of benzene vapor molecules using mixed oxide thin film of zinc oxide and cadmium oxide. Journal of Material Science in Semiconduting Processing. 132, 105930. doi: 10.1016/j.mssp.2021.105930.

[23] Saadie, J.H., 2015. Influence of thickness on electrical and optical properties of tellurium thin films deposited by chemical spray pyrolysis. International Journal of Applied Mathematics, Electronics and Computers. 3(2), 96-101.

[24] Xu, S.H., Huang, J.Y., Fei, G.T., et al., 2021. Sol-Gel preparation of high transmittance of infrared antireflective coating for TeO2 crystals. Journal of Infrared Physics and Technology. 118, 103881. doi: 10.1016/j.infrared.2021.103881.

[25] Patil, N.B., Nimbalkar, A.R., Patil, M.G., 2018. ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection. Journal of Material Sciences and Engineering B. 227(2), 53-60. doi: 10.1016/j.mseb.2017.10.011.

[26] Özgür, Ü., Ya, I., Alivov, C., et al., 2005. A comprehensive review of ZnO materials and devices. Journal of Applied Physics. 98(4), 1-103. doi: 10.1063/1.1992666.

[27] Look, D.C., 2001. Recent advances in ZnO ma-terials and devices. Journal of Material Science and Engineering B: Solid-State Materials and Advanced Technology. 80(1-3), 383-387. doi: 10.1016/S0921-5107(00)00604-8.

[28] Kayani, Z.N., Shah, I., Zulfiqar, B., et al., 2017. Structural, optical and magnetic properties of nanocrystalline Co-doped ZnO thin films grown by Sol-Gel. Journal of Applied Physical Sciences. 73(1), 13-21. doi: 10.1515/zna-2017-0302.

[29] Aparna, C., Shetty, P.K., Mahesha, M.G., 2022. Structural optimization of indium oxide thin film for gamma dosimetry applications. Journal of Material Science in Semiconducting Processing. 150, 106931.

[30] Shamma, K., Aldwayyan, A., Albrithen, H., et al., 2021. Exploiting the properties of TiO2 thin films as a sensing layer on (MEMS)-based sensors for radiation dosimetry applications. Journal of AIP Advanced. 025209, 1-9. doi: 10.1063/5.0032353.

[31] Ogundare, F.O., Olarinoye, I.O., 2015. He + induced changes in the surface structure and optical properties of RF-sputtered amorphous alumina thin films. Journal of Non Crystalline Solids. 432(Part B), 292-299. doi: 10.1016/ j.jnoncrysol.2015.10.026.

[32] Olarinoye, I.O., Ogundare, F.O., 2017. Optical and microstructural properties of neutron irradiated RF-sputtered amorphous alumina thin films. Journal of Optics. 134, 66-77.

[33] Jeong, W.S., Kim, J., Seok, J., et al., 2016. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Journal of Archieves of Toxicology. 90(4), 817-828.

[34] Li, Q., Zhou, C., Nie, S., et al., 2021. Durable Flexible Polymer-Encapsulated Cs4PbI6 Thin Film for High Sensitivity X-ray detection. Journal of Nano Letters. 21(24), 10279-10283.

[35] Aldawood, S.M., AlTalib, S., AlGarawi, O.M., et al., 2022. Gamma ray effects on the properties of PbI2 thin films. Journal of Radiation Physics and Chemistry. 193, 110003.

[36] Chauhan, V.R., Gupta, D., Upadhyay, S., et al., 2022. Influence of high dose gamma radiation on optical, physico-chemical and surface morphology properties of nanocrystalline ZrO2 thin films. Journal of Optical Materials. 126, 112125.

[37] Wang, S., Uprety, S., Mirkhani, V., et al., 2022. The effect of gamma-ray irradiation on the electrical characteristics of sol-gel derived zinc tin oxide thin film transistors. Journal of Solid-State Electronics. 191, 108270.

[38] Sen, M.A., Manir, S.K., Dutta, M.S., et al., 2020. Influence of total absorbed dose of Co60 γ-radiation on the properties of h-MoO3 thin films. Journal of Thin Solid Films. 693, 137700.

[39] Thabit, M.A., Kabir, H.A., Ismail, N.A., et al., 2022. Development of Ag-doped ZnO thin films and thermoluminescence (TLD) characteristics for radiation technology. Journal of Nanomaterials. 12(17), 3068.

[40] Ali, A.M.A., Ahmed, N.M., Mohammad, S.M., et al., 2019. Effect of gamma irradiation dose on the structure and pH sensitivity of ITO thin films in extended gate field effect transistor. Journal of Results in Physics. 12, 615-622.

[41] Maity, T.K., Sharma, S.L., Chourasiya, G., 2012. The real-time gamma radiation dosimetry with TeO2 thin films. Journal of Radiation Measurements. 47, 145-148. doi: 10.1016/j.radmeas.2011.11.008.

[42] Dubeau, J., Sun, J., Leroux, N., et al., 2023. The HP (3, α) dose response of direct reading survey meters. Journal of Radiation Measurements. 160, 106891. doi: 10.1016/j.radmeas.2022.106891.

[43] Bataliotti, M.D., Costa, F.B., Minussi, F.B., et al., 2022. Characterization of tellurium dioxide thin films obtained through the Pechini method. Journal of Sol-Gel Science and Technology. 1, 378-385. doi: 10.1007/s10971-022-05844-7.

[44] Shirpay, A., Mohagheghi, M.M.B., 2020. Investigation of structural, optical and thermoelectric properties of 2H—MoTe2 and MoO3—TeO2 thin films. Journal of Physica B: Condense Matter. 587, 412141. doi: 10.1016/j.physb.2020.412141.

[45] Urfa, Y., Çorumlu, V., Altındal, A., 2021. Gam-ma ray irradiation dose dependent methanol sensing with ZnO nanoparticles. Journal of Material Chemistry and Physics. 264, 124473. doi: 10.1016/j.matchemphys.2021.124473.

[46] Park, S., An, S., Lee, C., 2013. Structure and photoluminescence properties of TeO2-core/ TiO2-shell nanowires. Journal of Physica E: Low-dimensional Systems and Nanostructures. 54, 5-8. doi: 10.1016/j.physe.2013.05.023.

[47] Ambedkar, A.K., Singh, M., Kumar, V., et al., 2020. Structural, optical and thermoelectric properties of Al-doped ZnO thin films prepared by spray pyrolysis. Journal of Surfaces and Interfaces. 19, 100504. doi: 10.1016/j.surfin.2020.100504.

[48] Maity, T.K., Sharma, S.L., 2011. Effects of gamma irradiation on electrical, optical and structural properties of tellurium dioxide thin films. Indian Journal of Pure and Applied Physics. 49(9), 606-612.

[49] Silambarasan, M., Saravanan, S., Soga, T., 2015. Raman and photoluminescence studies of A and Fe-doped ZnO nanoparticles. International Journal of ChemTech Research. 7(3), 1644-1650.

[50] Shanmugam, N., Suthakaran, S., Kannadasan, N., et al., 2015. Synthesis and characterization of Te doped ZnO nanosheets for photocatalytic application. Journal of Heterocyclics.1(1), 1-6. doi: 10.33805/2639-6734.105.

[51] Jeong, S., Kim, M., Lee, S., et al., 2014. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping. Journal of Nanoscale Research Letters. 9(1), 1-9. doi: 10.1186/1556-276X-9-619.

[52] Khan, M.I., Bhatti, K.A., Qindeel, R., et al., 2016. Investigations of the structural, morphological and electrical properties of multilayer ZnO/TiO2 thin films, deposited by Sol-Gel technique. Journal of Results in Physics. 6, 156-160. doi: 10.1016/j.rinp.2016.01.015.

[53] Carotenuto, G., Palomba, M., De Nicola, S., et al., 2015. Structural and photoconductivity properties of tellurium / PMMA films. Journal of Nanoscale Research Letters. 10, 313. doi: 10.1186/s11671-015-1007-z.

[54] Shatnawi, M., Alsmadi, A.M., Bsoul, I., et al., 2016. Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles results in physics influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles. Journal of Results in Physics. 6, 1064-1071. doi: 10.1016/ j.rinp.2016.11.041.

[55] Maity, T.K., Sudha, A., Sharma, S.L., et al., 2016. High sensitivity gamma radiation dosimetry using (In2O3)0.1(TeO2)0.9 thin films. Journal of Radiation Protection Environment. 1, 135-138. doi: 10.4103/0972-0464.176156.

[56] Sudha, A., Sharma, S.L., Gupta, A.N., 2019. Achieving sensitive and stable indium oxide thin films for gamma radiation monitoring. Journal of Sensors Actuators A: Physica. 285, 378-385. doi: 10.1016/j.sna.2018.10.015.

[57] Chen, C.J., Chandel, A., Thakur, D., et al., 2021. Ag modified bathocuproine: ZnO nanoparticles electron buffer layer based bifacial inverted-type perovskite solar cells. Journal of Organic Electronics. 92, 106110. doi: 10.1016/ j.orgel.2021.106110.

[58] Zygmanski, P., 2016. A self-powered thin-film radiation detector using intrinsic high-energy current. Journal of Medical Physics. 43(1), 4-15.

[59] Paraguay D.F., Estrada L.W., Acosta N.D.R., et al., 1999. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Journal of Thin Solid Films. 350(1), 192-202. doi: 10.1016/S0040- 6090(99)00050-4.

[60] Salam, S., Islam, M., Akram, A., 2012. Solgel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells. Journal of Thin Solid Films. 529, 242-247. doi: 10.1016/ j.tsf.2012.10.079.

[61] Al-maiyaly, B.K.H., 2018. Effect of gamma ray irradiation on structural and optical properties of ZnO thin films. Journal of Pure and Applied Science. 28(3).


How to Cite

Idris, M. M., Olarinoye, I. O., Kolo, M. T., Ibrahim, S. O., & Audu, J. K. (2023). High Energy X-Ray Dosimetry Using (ZnO)0.2(TeO2)0.8 Thin Filmbased Real-time X-Ray Sensor. Non-Metallic Material Science, 5(1), 4–13. https://doi.org/10.30564/nmms.v5i1.5369


Article Type