-
1547
-
1085
-
1082
-
632
-
600
Reflection Loss is a Parameter for Film, not Material
DOI:
https://doi.org/10.30564/nmms.v5i1.5602Abstract
In studies of microwave absorption in the current literature, theories such as reflection loss, impedance matching, the delta function, and the quarter-wavelength model have been inappropriately applied. As shown in this case study, these problems need to be corrected as they are representative of similar work in the literature.
Keywords:
Microwave absorption; Reflection loss; Impedance matching; Input impedanceReferences
[1] Vazire, S., 2020. A toast to the error detectors. Nature. 577(7788), 9-10. DOI: https://doi.org/10.1038/d41586-019-03909-2
[2] Ioannidis, J.P., 2005. Why most published research findings are false. PLoS Medicine. 2(8), e124. DOI: https://doi.org/10.1371/journal.pmed.0020124
[3] Liu, Y., Liu, Y., Drew, M.G., 2020. Clarifications of concepts concerning interplanar spacing in crystals with reference to recent publications. SN Applied Sciences. 2, 1-29. DOI: https://doi.org/10.1007/s42452-020-2498-5
[4] Wang, Y., Li, X., Han, X., et al., 2020. Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chemical Engineering Journal. 387, 124159. DOI: https://doi.org/10.1016/j.cej.2020.124159
[5] Wang, Y., Han, X., Xu, P., et al., 2019. Synthesis of pomegranate-like Mo2C@ C nanospheres for highly efficient microwave absorption. Chemical Engineering Journal. 372, 312-320. DOI: https://doi.org/10.1016/j.cej.2019.04.153
[6] Wang, Y., Li, C., Han, X., et al., 2018. Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Applied Nano Materials. 1(9), 5366-5376. DOI: https://doi.org/10.1021/acsanm.8b01479
[7] Wang, Y., Du, Y., Xu, P., et al., 2017. Recent advances in conjugated polymer-based microwave absorbing materials. Polymers. 9(1), 29. DOI: https://doi.org/10.3390/polym9010029
[8] Wang, F., Liu, Y., Zhao, H., et al., 2022. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chemical Engineering Journal. 450, 138160. DOI: https://doi.org/10.1016/j.cej.2022.138160
[9] Liu, Y., Tian, C., Wang, F., et al., 2023. Dual-pathway optimization on microwave absorption characteristics of core-shell Fe3O4@ C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chemical Engineering Journal. 461, 141867. DOI: https://doi.org/10.1016/j.cej.2023.141867
[10] Du, Y., 2022. Advances in carbon-based microwave absorbing materials. Materials. 15(4), 1359. DOI: https://doi.org/10.3390/ma15041359
[11] Wang, F., Xu, P., Shi, N., et al., 2021. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. Journal of Materials Science & Technology. 93, 7-16. DOI: https://doi.org/10.1016/j.jmst.2021.03.048
[12] Zhao, H., Wang, F., Cui, L., et al., 2021. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review. Nano-Micro Letters. 13, 1-33. DOI: https://doi.org/10.1007/s40820-021-00734-z
[13] Wang, F., Cui, L., Zhao, H., et al., 2021. High-efficient electromagnetic absorption and composites of carbon microspheres. Journal of Applied Physics. 130(23), 230902. DOI: https://doi.org/10.1063/5.0068122
[14] Wang, P., Liu, D., Cui, L., et al., 2021. A review of recent advancements in Ni-related materials used for microwave absorption. Journal of Physics D: Applied Physics. 54(47), 473003. DOI: https://doi.org/10.1088/1361-6463/ac196d
[15] Liu, Y., Zhao, K., Drew, M.G., et al., 2018. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Advances. 8(1), 015223. DOI: https://doi.org/10.1063/1.4991448
[16] Liu, Y., Yu, H., Drew, M.G., et al., 2018. A systemized parameter set applicable to microwave absorption for ferrite based materials. Journal of Materials Science: Materials in Electronics. 29(2), 1562-1575. DOI: https://doi.org/10.1007/s10854-017-8066-0
[17] Liu, Y., Drew, M.G., Li, H., et al., 2020. An experimental and theoretical investigation into methods concerned with “reflection loss” for microwave absorbing materials. Materials Chemistry and Physics. 243, 122624. DOI: https://doi.org/10.1016/j.matchemphys. 2020.122624
[18] Liu, Y., Drew, M.G., Li, H., et al., 2021. A theoretical analysis of the relationships shown from the general experimental results of scattering parameters s 11 and s 21—exemplified by the film of BaFe12-i Ce i O19/polypyrene with i= 0.2, 0.4, 0.6. Journal of Microwave Power and Electromagnetic Energy. 55(3), 197-218. DOI: https://doi.org/10.1080/08327823.2021.1952835
[19] Liu, Y., Liu, Y., Drew, M.G., 2021. A theoretical investigation on the quarter-wavelength model—part 1: Analysis. Physica Scripta. 96(12), 125003. DOI: https://doi.org/10.1088/1402-4896/ac1eb0
[20] Liu, Y., Liu, Y., Drew, M.G., 2022. A theoretical investigation of the quarter-wavelength model—part 2: Verification and extension. Physica Scripta. 97(1), 015806. DOI: https://doi.org/10.1088/1402-4896/ac1eb1
[21] Liu, Y., Liu, Y., Drew, M.G., 2022. A Re-evaluation of the mechanism of microwave absorption in film—Part 1: Energy conservation. Materials Chemistry and Physics. 290, 126576. DOI: https://doi.org/10.1016/j.matchemphys. 2022.126576
[22] Liu, Y., Liu, Y., Drew, M.G., 2022. A Re-evaluation of the mechanism of microwave absorption in film—Part 2: The real mechanism. Materials Chemistry and Physics. 291, 126601. DOI: https://doi.org/10.1016/j.matchemphys. 2022.126601
[23] Liu, Y., Liu, Y., Drew, M.G., 2022. A re-evaluation of the mechanism of microwave absorption in film—Part 3: Inverse relationship. Materials Chemistry and Physics. 290, 126521. DOI: https://doi.org/10.1016/j.matchemphys. 2022.126521
[24] Liu, Y., Yin, X., Drew, M.G.B., et al., 2023. Microwave absorption of film explained accurately by wave cancellation theory. Preprint. DOI: https://doi.org/10.21203/rs.3.rs-2616469/v2
[25] Wu, Z., Cheng, H.W., Jin, C., et al., 2022. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Advanced Materials. 34(11), 2107538. DOI: https://doi.org/10.1002/adma.202107538
[26] Cheng, J., Zhang, H., Ning, M., et al., 2022. Emerging materials and designs for low-and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy?. Advanced Functional Materials. 32(23), 2200123. DOI: https://doi.org/10.1002/adfm.202200123
[27] Xia, Y., Gao, W., Gao, C., 2022. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Advanced Functional Materials. 32(42), 2204591. DOI: https://doi.org/10.1002/adfm.202204591
[28] Xia, L., Feng, Y., Zhao, B., 2022. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough. Journal of Materials Science & Technology. 130, 136-156. DOI: https://doi.org/10.1016/j.jmst.2022.05.010
[29] Planck, M., 1950. Scientific autobiography and other paper. William & Norgate: London. pp. 33-34.
[30] Liu, Y., Lin, Y., Zhao, K., et al., 2020. Microwave absorption properties of Ag/NiFe2-xCexO4 characterized by an alternative procedure rather than the main stream method using “reflection loss”. Materials Chemistry and Physics. 243, 122615. DOI: https://doi.org/10.1016/j.matchemphys. 2019.122615
[31] Kim, S.S., Han, D.H., Cho, S.B., 1994. Microwave absorbing properties of sintered Ni-Zn ferrite. IEEE Transactions on Magnetics. 30(6), 4554-4556.
[32] Wu, C., Bi, K., Yan, M., 2020. Scalable self-supported FeNi3/Mo2C flexible paper for enhanced electromagnetic wave absorption evaluated via coaxial, waveguide and arch methods. Journal of Materials Chemistry C. 8(30), 10204-10212. DOI: https://doi.org/10.1039/d0tc01881c
[33] Li, Q., Zhao, Y., Li, X., et al., 2020. MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small. 16(42), 2003905. DOI: https://doi.org/10.1002/smll.202003905
[34] Zeng, S., Yao, Y., Feng, W., et al., 2020. Constructing a 3D interconnected Fe@ graphitic carbon structure for a highly efficient micro-wave absorber. Journal of Materials Chemistry C. 8(4), 1326-1334. DOI: https://doi.org/10.1039/c9tc05615g
[35] Yu, X.F., Zhang, Y., Wang, L., et al., 2020. Boosted microwave absorption performance of multi-dimensional Fe2O3/CNTsCM@CN assembly by enhanced dielectric relaxation. Journal of Materials Chemistry C. 8(17), 5715-5726. DOI: https://doi.org/10.1039/d0tc00941e
[36] Zhou, W., Long, L., Bu, G., et al., 2019. Mechanical and microwave-absorption properties of Si3N4 ceramic with SiCNFs fillers. Advanced Engineering Materials. 21(5), 1800665. DOI: https://doi.org/10.1002/adem.201800665
[37] Lin, H., Green, M., Xu, L.J., et al., 2020. Microwave absorption of organic metal halide nanotubes. Advanced Materials Interfaces. 7(3), 1901270. DOI: https://doi.org/10.1002/admi.201901270
[38] Ye, F., Song, Q., Zhang, Z., et al., 2018. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Advanced Functional Materials. 28(17), 1707205. DOI: https://doi.org/10.1002/adfm.201707205
[39] Sun, X., Yang, M., Yang, S., et al., 2019. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small. 15(43), 1902974. DOI: https://doi.org/10.1002/smll.201902974
[40] Ding, J., Wang, L., Zhao, Y., et al., 2019. Boosted interfacial polarization from multishell TiO2@ Fe3O4@ PPy heterojunction for enhanced microwave absorption. Small. 15(36), 1902885. DOI: https://doi.org/10.1002/smll.201902885
[41] Green, M., Tran, A.T., Chen, X., 2020. Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery. Advanced Materials Interfaces. 7(18), 2000658. DOI: https://doi.org/10.1002/admi.202000658
[42] Wang, X., Du, Z., Hou, M., et al., 2022. Approximate solution of impedance matching for nonmagnetic homogeneous absorbing materials. The European Physical Journal Special Topics. 231(24), 4213-4220. DOI: https://doi.org/10.1140/epjs/s11734-022-00570-1
[43] Liu, Y., Li, X., Drew, M.G., et al., 2015. Increasing microwave absorption efficiency in ferrite based materials by doping with lead and forming composites. Materials Chemistry and Physics. 162, 677- 685. DOI: https://doi.org/10.1016/j.matchemphys. 2015.06.042
[44] Liu, J., Jia, Z., Zhou, W., et al., 2022. Self-assembled MoS2/magnetic ferrite CuFe 2O4 nanocomposite for high-efficiency microwave absorption. Chemical Engineering Journal. 429, 132253. DOI: https://doi.org/10.1016/j.cej.2021.132253
[45] Zhu, X., Qiu, H., Chen, P., et al., 2021. Anemone-shaped ZIF-67@ CNTs as effectiveelectromagnetic absorbent covered the whole X-band. Carbon. 173, 1-10. DOI: https://doi.org/10.1016/j.carbon.2020.10.055
[46] Zhu, X., Qiu, H., Chen, P., et al., 2021. Graphitic carbon nitride (g-C3N4) in situ polymerization to synthesize MOF-Co@ CNTs as efficient electromagnetic microwave absorption materials. Carbon. 176, 530-539. DOI: https://doi.org/10.1016/j.carbon.2021.02.044
[47] Ma, Z., Zhang, Y., Cao, C., et al., 2011. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Physica B: Condensed Matter. 406(24), 4620-4624. DOI: https://doi.org/10.1016/j.physb.2011.09.039
[48] Huang, Y., Ji, J., Chen, Y., et al., 2019. Broadband microwave absorption of Fe3O4BaTiO3 composites enhanced by interfacial polarization and impedance matching. Composites Part B: Engineering. 163, 598-605. DOI: https://doi.org/10.1016/j.compositesb. 2019.01.008
[49] Cheng, Y., Hu, P., Zhou, S., et al., 2018. Achiev-ing tunability of effective electromagnetic wave absorption between the whole X-band and Kuband via adjusting PPy loading in SiC nanowires/ graphene hybrid foam. Carbon. 132, 430-443.DOI: https://doi.org/10.1016/j.carbon.2018.02.084
[50] Liu, D., Qiang, R., Du, Y., et al., 2018. Prussian blue analogues derived magnetic FeCo alloy/ carbon composites with tunable chemical composition and enhanced microwave absorption. Journal of Colloid and Interface Science. 514, 10-20. DOI: https://doi.org/10.1016/j.jcis.2017.12.013
[51] Qiang, R., Du, Y., Chen, D., et al., 2016. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). Journal of Alloys and Compounds. 681, 384-393. DOI: https://doi.org/10.1016/j.jallcom.2016.04.225
[52] Cui, L., Tian, C., Tang, L., et al., 2019. Space-confined synthesis of core-shell BaTiO3@ Carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Applied Materials & Interfaces. 11(34), 31182-31190. DOI: https://doi.org/10.1021/acsami.9b09779
[53] Zhang, X., Qiao, J., Jiang, Y., et al., 2021. Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Letters. 13, 135. DOI: https://doi.org/10.1007/s40820-021-00658-8
[54] Liu, H., Zhang, M., Hu, K., et al., 2021. High-efficiency microwave absorption performance of cobalt ferrite microspheres/multi-walled carbon nanotube composites. Journal of Materials Science: Materials in Electronics. 32, 26021-26033. DOI: https://doi.org/10.1007/s10854-021-05877-8
[55] Min, W., Xu, D., Chen, P., et al., 2021. Synthesis of novel hierarchical CoNi@ NC hollow microspheres with enhanced microwave absorption performance. Journal of Materials Science: Materials in Electronics. 32(6), 8000-8016. DOI: https://doi.org/10.1007/s10854-021-05523-3
[56] Chen, G., Xu, D., Chen, P., et al., 2021. Constructing and optimizing hollow bird-nestpatterned C@ Fe3O4 composites as high-performance microwave absorbers. Journal of Magnetism and Magnetic Materials. 532, 167990. DOI: https://doi.org/10.1016/j.jmmm.2021.167990
[57] Qiu, H., Zhu, X., Chen, P., et al., 2021. Synthesis of ternary core-shell structured ZnOC@ CoC@ PAN for high-performance electromagnetic absorption. Journal of Alloys and Compounds. 868, 159260. DOI: https://doi.org/10.1016/j.jallcom.2021.159260
[58] Zhang, Z., Cai, Z., Wang, Z., et al., 2021. A review on metal—organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Letters. 13(1), 1-29. DOI: https://doi.org/10.1007/s40820-020-00582-3
[59] Zhang, X., Ren, X., Wang, C., et al., 2021. Synthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption property. Journal of Materials Science: Materials in Electronics. 32(4), 4404-4415. DOI: https://doi.org/10.1007/s10854-020-05183-9
[60] Zhang, H., Pang, H., Duan, Y., et al., 2021. Facile morphology controllable synthesis of zinc oxide decorated carbon nanotubes with enhanced microwave absorption. Journal of Materials Science: Materials in Electronics. 32(9), 12208-12222. DOI: https://doi.org/10.1007/s10854-021-05850-5
[61] Yuan, M., Yao, Q., Zhou, H., et al., 2021. Effect of Pr2Fe17 alloy doping Cr on magnetic and microwave absorption properties. Journal of Materials Science: Materials in Electronics. 32(10), 13108-13116. DOI: https://doi.org/10.1007/s10854-021-05801-0
[62] Huang, F., Wang, S., Ding, W., et al., 2021. Sulfur-doped biomass-derived hollow carbon microtubes toward excellent microwave absorption performance. Journal of Materials Science: Materials in Electronics. 32(5), 6260-6268. DOI: https://doi.org/10.1007/s10854-021-05341-7
[63] Bao, X.K., Shi, G.M., Wang, X.L., et al., 2021.Effect of nitrogen-doping content on microwave absorption performances of Ni@ NC nanocapsules. Journal of Materials Science: Materials in Electronics. 32(1), 1007-1021. DOI: https://doi.org/10.1007/s10854-020-04876-5
[64] Liu, Y., Drew, M.G., Liu, Y., 2019. Characterization microwave absorption from active carbon/BaSmxFe12−xO19/polypyrrole composites analyzed with a more rigorous method. Journal of Materials Science: Materials in Electronics. 30(2), 1936-1956. DOI: https://doi.org/10.1007/s10854-018-0467-1
[65] Green, M., Chen, X., 2019. Recent progress of nanomaterials for microwave absorption. Journal of Materiomics. 5(4), 503-541. DOI: https://doi.org/10.1016/j.jmat.2019.07.003
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2023 Author(s)
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.