Functional-Material-Based Touch Interfaces for Multidimensional Sensing for Interactive Displays: A Review
DOI:
https://doi.org/10.30564/ssid.v1i1.1171Abstract
Multidimensional sensing is a highly desired attribute for allowing human-machine interfaces (HMIs) to perceive various types of information from both users and the environment, thus enabling the advancement of various smart electronics/applications, e.g., smartphones and smart cities. Conventional multidimensional sensing is achieved through the integration of multiple discrete sensors, which introduces issues such as high energy consumption and high circuit complexity. These disadvantages have motivated the widespread use of functional materials for detecting various stimuli at low cost with low power requirements. This work presents an overview of simply structured touch interfaces for multidimensional (x-y location, force and temperature) sensing enabled by piezoelectric, piezoresistive, triboelectric, pyroelectric and thermoelectric materials. For each technology, the mechanism of operation, state-of-the-art designs, merits, and drawbacks are investigated. At the end of the article, the author discusses the challenges limiting the successful applications of functional materials in commercial touch interfaces and corresponding development trends.
Keywords:
Touch interfaces; Functional materials; Multidimensional sensing; Interactive displaysReferences
[1] A. Nathan and S. Gao. Interactive Displays: The Next Omnipresent Technology [Point of View]. Proceedings of the IEEE, 2016, 104(8): 1503-1507.
[2] G. Walker. A review of technologies for sensing contact location on the surface of a display. Journal of the Society of Information Display, 2012, 20(8): 413–440.
[3] S. H. Park, H. S. Kim, J. S. Bang and G. H. Cho, and Cho. A 0.26-nJ/node, 400-kHz Tx driving, filtered fully differential readout IC with parasitic RC Time delay reduction technique for 65-in capacitive-type touch screen panel. IEEE Journal of Solid-State Circuits, 2017, 52(2): 528-542.
[4] A. T. Fried, S. W. Tanamachi, J. T. Abrahamson and R. J. Monson. Qualification of silver nanowire transparent conductive films for touch panel applications. In 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO), 2014: 24-26.
[5] M. D. Ker, P. Y. Chiu, W. T. Shieh and C. C. Wang. ESD Protection design for touch panel control IC against latchup-like failure induced by system-level ESD test. IEEE Transactions on Electron Devices 2017; 64(2): 642-645.
[6] S. Blayac, A. Schreiner, M. Nouaille, B. Dubois and F. Depoutot. Single port, large area touch and force sensing: Towards low cost sensitive printed surfaces. In 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014: 1-6.
[7] Z. Ye, M. Wong, M. T. Ng, K. H. Chui, C. K. Kong, L. Lu, and J. K. Luo. High precision active-matrix self-capacitive touch panel based on fluorinated ZnO thin-film transistor. Journal of Display Technology, 2015, 11(1): 22-29.
[8] C. C. Lee, J. C. Ho, K. J. Chen, M. H. Yeh, Y. Z. Lee and J. Chen. Highly flexible AMOLED integrated with ultrathin on-cell touch panel. In 2016 IEEE Photonics Conference (IPC), 2016: 665-666.
[9] Y. M. Chiang, Y. L. Lin and W. H. Chien. Automated surface defect inspection system for capacitive touch sensor. In 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), 2015: 274-277.
[10] C. L. Lin, T. C. Chu, C. E. Wu, Y. M. Chang, T. C. Lin, J. F. Chen and W. C. Chiu. Tracking Touched Trajectory on Capacitive Touch Panels Using an Adjustable Weighted Prediction Covariance Matrix. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4910-4916.
[11] S. J. Wu, Y. C. Wu, H. H. Tsai, H. H. Liao, Y. Z. Juang and C. H. Lin. ISFET-based pH sensor composed of a high transconductance CMOS chip and a disposable touch panel film as the sensing layer. In 2015 IEEE SENSORS Conference, 2015: 1-4.
[12] L. Du, C. Liu, A. Tang, Y. Zhang, Y. Li, K. Cheung and M. C. F. Chang. Airtouch: A novel single layer 3D touch sensing system for human/mobile devices interactions. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2016, 1-6.
[13] C. L. Lin, Y. M. Chang, C. C. Hung, C. D. Tu and C. Y. Chuang. Position estimation and smooth tracking with a fuzzy-logic-based adaptive strong tracking Kalman filter for capacitive touch panels. IEEE Transactions on Industrial Electronics, 2015, 62(8): 5097-5108.
[14] P. Y. L. Lee, C. W. Lu, C. C. Hsieh, T. Y. Chang, J. Y. C. Liu, H. C. Liang and H. N. Wu. Electric hum signal readout circuit for touch screen panel applications. Journal of Display Technology, 2016, 12(11): 1444-1450.
[15] S. H. Lee, J. S. An, S. K. Hong and O. K. Kwon. In-cell capacitive touch panel structures and their readout circuits. In 2016 IEEE The 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AMFPD), 2016: 258-261.
[16] Y. C. Wu, S. J. Wu and C. H. Lin. High performance EGFET-based pH sensor utilizing low-cost industrial-grade touch panel film as the gate structure. IEEE Sensors Journal, 2015, 15(11): 6279-6286.
[17] C. Kim, D. S. Lee, J. H. Kim, H. B. Kim, S. R. Shin, J. H. Jung,... and G. T. Kim. 60.2: Invited Paper: Advanced In-cell Touch Technology for Large Sized Liquid Crystal Displays. In SID Symposium Digest of Technical Papers, 2015, 46(1): 895-898.
[18] H. Akhtar and Q. Kemao. An accurate and efficient sampling algorithm for capacitive touch panels. In Instrumentation and Measurement Technology Conference Proceedings (I2MTC). IEEE International, 2016: 1-6.
[19] N. Miura, S. Dosho, S. Takaya, D. Fujimoto, T. Kiriyama, H. Tezuka and M. Nagata. 12.4 A 1mm-pitch 80× 80-channel 322Hz-frame-rate touch sensor with two-step dual-mode capacitance scan. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), IEEE International, 2014: 216-217.
[20] S. Kim, S. Cho, Y. Pu, S.S. Yoo, M. Lee, K.C. Hwang, Y. Yang and K.Y. Lee. A 39.5-dB SNR, 300-Hz Frame-Rate, 56× 70-Channel Read-Out IC for Electromagnetic Resonance Touch Panels. IEEE Transactions on Industrial Electronics, 2018, 65(6): 5001-5011.
[21] O. Raymudo. Iphone 6S display teardown reveals how 3D touch sensors actually work. Message Posted to Macworld, 2015.
[22] S. Gao, X. Wu, H. Ma, J. Robertson and A. Nathan. Ultrathin multifunctional graphene-PVDF layers for multidimensional touch interactivity for flexible displays. ACS Applied Materials & Interfaces 2017, 9(22): 18410-18416.
[23] T. Vuorinen, M. Zakrzewski, S. Rajala, D. Lupo, J. Vanhala, K. Palovuori and S. Tuukkanen. Printable, transparent and flexible touch panels working in sunlight and moist environments. Advanced Functional Materials, 2014, 24(40): 6340-6347.
[24] S. Gao, V. Arcos and A. Nathan. Piezoelectric vs. Capacitive Based Force Sensing in Capacitive Touch Panels. IEEE Access, 2016, 4: 3769-3774.
[25] T. Jin, J. Ryu, H. Kang, K. No and S.H.K. Park. 46-2: Multi-level-pressure touch sensors with P (VDF-TrFE) deposited on metal oxide thin film transistor. SID Symposium Digest of Technical Papers, 2016, 47(1): 621-624.
[26] C. C. Kim, H. H. Lee, K. H. Oh and J. Y. Sun. Highly stretchable, transparent ionic touch panel. Science, 2016, 353(6300): 682.
[27] G. Sari, M. B. Akgül, B. Kirişken, A. F. Ak and A. A. Akiş. An experimental study of a piezoelectrically actuated touch screen. Mechanical and Aerospace Engineering (ICMAE), 8th International Conference, 2017: 753-758.
[28] S. Yue and W. A. Moussa. A piezoresistive tactile sensor array for touchscreen panels. IEEE Sensors Journal, 2017, 18(4): 1685-1693.
[29] M. Ruoho, T. Juntunen, T. Alasaarela, M. Pudas and I. Tittonen. Transparent, flexible, and passive thermal touch panel. Advanced Materials Technologies, 2016, 1(9).
[30] D. D. Liana, B. Raguse, J. J. Gooding and E. Chow. An integrated paper‐based readout system and piezoresistive pressure sensor for measuring bandage compression. Advanced Materials Technologies, 2016, 1(9).
[31] J. Wu, L. Wang and J. Li. A handwriting input method based on the thermal cue of the fingertip. Measurement, 2016, 91: 557-564.
[32] X. Wang, H. Zhang, L. Dong, X. Han, W. Du, J. Zhai, C. Pan and Z. L. Wang. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Advanced materials, 2016, 28(15): 2896-2903.
[33] X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu and Z. L. Wang. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Science Advances, 2017, 3(5): e1700015.
[34] X. Z. Jiang, Y. J. Sun, Z. Fan and T. Y. Zhang. Integrated flexible, waterproof, transparent and self-powered tactile sensing panel. ACS Nano, 2016, 10(8): 7696-7704.
[35] S. P. Mohanty, U. Choppali and E. Kougianos. Everything you wanted to know about smart cities: The internet of things is the backbone. IEEE Consumer Electronics Magazine, 2016, 5(3): 60-70.
[36] H. Wang, Q. M. Zhang, L. E. Cross and A. O. Sykes. Piezoelectric, dielectric and elastic properties of poly (vinylidene fluoride/trifluoroethylene). Journal of Applied Physics, 1993, 74(5): 3394-3398.
[37] X. Zhao, et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Materials and Structures, 2007, 16(4): 1208.
[38] P. F. Liu, X. J. Meng, J. H. Chu, G. Geneste and B. Dkhil. Effect of in-plane misfit strains on dielectric and pyroelectric response of poly (vinylidene fluoride-trifluoroethylene) ferroelectric polymer. Journal of Applied Physics, 2009, 105(11): 114105.
[39] N. W.Emanetoglu, C. Gorla, Y. Liu, S. Liang and Y. Lu. Epitaxial ZnO piezoelectric thin films for saw filters. Materials Science in Semiconductor Processing, 1999, 2(3): 247-252.
[40] C. Jagadish and S. J. Pearton, Eds. Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier, 2011.
[41] T. Karaki, K. Yan, T. Miyamoto and M. Adachi. Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Japanese Journal of Applied Physics, 2007, 46(2L): L97.
[42] N. Ma, B. P. Zhang, W. G. Yang and D. Guo. Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics. Journal of the European Ceramic Society, 2012, 32(5): 1059-1066.
[43] S. B.Jung and S. W. Kim. Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control. Precision Engineering, 1994, 16(1): 49-55.
[44] B. Li, J. H. You and Y. J. Kim. Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator. Smart Materials and Structures, 2013, 22(5): 055013.
[45] L. Ruan, X.Yao, Y. Chang, L. Zhou, G. Qin and X. Zhang. Properties and Applications of the β Phase Poly (vinylidene fluoride). Polymers, 2018, 10(3): 228.
[46] K. Iniewski. Smart sensors for industrial applications. CRC Press, 2016.
[47] V. J. Hodge, S. O. Keefe, M. Weeks and A. Moulds. Wireless sensor networks for condition monitoring in the railway industry: A survey. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1088-1106.
[48] D. Calestani, M. Villani, M. Culiolo, D. Delmonte, N. Coppedè and A. Zappettini. Smart composites materials: A new idea to add gas-sensing properties to commercial carbon-fibers by functionalization with ZnO nanowires. Sensors and Actuators B: Chemical, 2017, 245: 166-170.
[49] Z. Huang, Q. Zhang, S. Corkovic, R. Dorey and R. W. Whatmore. Comparative measurements of piezoelectric coefficient of PZT films by berlincourt, interferometer, and vibrometer methods. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(12).
[50] F. Xu, F. Chu and S. Trolier-McKinstry. Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig. Journal of Applied Physics, 1999, 86(1): 588-594.
[51] G. Binnig, C. F. Quate and C. Gerber. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930.
[52] S. Rajala, M. Paajanen and J. Lekkala. Measurement of sensitivity distribution map of a ferroelectret polymer film. IEEE Sensors Journal 2016, 16(23): 8517-8522.
[53] A. Nathan, J. C. Lai and S. Gao, Processing signals from a touchscreen panel. U.S. Patent No. 10/061,434. 2018.
[54] A. Nathan, J. C. Lai and S. Gao. Touchscreen panel signal processing, U.S. Patent Application 15/421,648, 2017.
[55] S. H. Bae, O. Kahya, B. K. Sharma, J. Kwon, H. J. Cho, B. Ozyilmaz and J. H. Ahn. Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano, 2013, 7(4): 3130-3138.
[56] S. Gao, S. and W. Wu. Why Piezoelectric Force Sensing is not successful in interactive displays. accepted in IEEE Consumer Electronics Magazines, 2018.
[57] M. Hrovat, D. Belavic, K. Makarovic, J. Cilenšek and B. Malic. Characterisation of thick-film resistors as gauge sensors on different ltcc substrates. Informacije MIDEM, 2014, 44(1): 4-11.
[58] C. Song, D. V. Kerns, J. L. Davidson and W. Kang. Evaluation and design optimization of piezoresistive gauge factor of thick-film resistors. Southeastcon '91. IEEE Proceedings of, 1991, 21: 1106-1109.
[59] S. Stassi, V. Cauda, G. Canavese and C. F. Pirri. Flexible tactile sensing based on piezoresistive composites: a review. Sensors, 2014, 14(3): 5296-332.
[60] R. S. Karmakar, Y. J. Lu, Y. Fu, K. C. Wei, S. H. Chan and M. C. Wu. Cross-talk immunity of pedot:pss pressure sensing arrays with gold nanoparticle incorporation. Scientific Reports, 2017, 7(1): 12252.
[61] P. Rita, G. Loriga, and N. Taccini. A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology In Biomedicine, 2005, 9(3): 337-344.
[62] T. Mochizuki, et al. Fabrication of flexible transparent electrodes using PEDOT:PSS and application to resistive touch screen panels. Journal of Applied Polymer Science, 2018, 135(10): 45972.
[63] S. F. Tseng, W. T. Hsiao, K. C. Huang and D. Chiang. Electrode patterning on PEDOT:PSS thin films by pulsed ultraviolet laser for touch panel screens. Applied Physics A, 2013, 112(1): 41-47.
[64] Z. L. Wang. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11): 9533-9557.
[65] L. Dascalescu, C. Dragan, M. Bilici and R. Chereches. Triboelectric phenomena in suction-type dilute-phase pneumatic transportation systems for granular plastics. IEEE Transactions on Industry Applications, 2010, 46(4): 1570-1577.
[66] J. Shen, Z. Li, J. Yu, B. Ding, and Z. Li, et al. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 2017, 40: 282-288.
[67] B. Ypsilanti and B. Sanden. Particle reduction through the control of triboelectric charges. IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, 1994: 92-94.
[68] Y. Zi, et al. Effective energy storage from a triboelectric nanogenerator. Nature Communications, 2016, 7: 10987.
[69] B. Zhang, et al. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10(6): 6241-6247.
[70] H. Guo, et al. A water‐proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Advanced Energy Materials, 2016, 6(6).
[71] L. Zhang, et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Advanced Materials, 2016, 28(8): 1650-1656.
[72] Z. Wen, et al. Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano, 2016, 10(7): 6526.
[73] G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou and Z. L. Wang. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Letter, 2013, 13: 847–853.
[74] C. Wu, et al. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core–Shell Nanocomposites. ACS Nano, 2016, 10(7): 6449-6457.
[75] B. Meng, et al. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy & Environmental Science, 2013, 6(11): 3235-3240.
[76] S. Wang, L. Lin and Z. L. Wang. Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015, 11: 436-462.
[77] M. L. Seol. Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy, 2015, 17: 63-71.
[78] G. Zhu, et al. Self-Powered, Ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 2018, 14(6): 3208-3213.
[79] H. Guo, et al. A triboelectric generator based on checker‐like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions. advanced energy materials, 2015, 5(1).
[80] J. W. Zhong, Q. Z. Zhong, F. R. Fan, Y. Zhang, S. H. Wang, B. Hu, Z. L. Wang and J. Zhou. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy, 2013, 2(4): 491–497.
[81] A. Davidson, A. Buis, and I. Glesk. Toward novel wearable pyroelectric temperature sensor for medical applications. IEEE Sensors Journal, 2017, 17(20): 6682 – 6689.
[82] M. R. H. Sarker, et al. Characterization of the pyroelectric coefficient of a high-temperature sensor. Journal of Intelligent Material Systems & Structures, 2017: 1045389X1772137.
[83] S. A. Pullano, S. K. Islam, and A. S. Fiorillo. Pyroelectric sensor for temperature monitoring of biological fluids in microchannel devices. IEEE Sensors Journal, 2014, 14(8): 2725-2730.
[84] C. Kittel. Introduction to solid state physics, 8th edition. American Journal of Physics, 2005, 21(8): 547-548.
[85] J. G. Webster. The measurement, instrumentation, and sensors handbook. CRC Press, 1995.
[86] A. V. Bune, et al. Piezoelectric and pyroelectric properties of ferroelectric Langmuir–Blodgett polymer films. Journal of applied physics, 1999, 85(11): 7869-7873.
[87] R. W. Whatmore. Pyroelectric devices and materials, Infrared Detectors and Emitters: Materials and Devices. Electronic Materials Series, 2001, 8. Springer, Boston, MA
[88] Y. J. Ko, B. K. Yun and J. H. Jung. A 0.7 Pb (Mg 1/3 Nb 2/3) O 3-0.3 PbTiO 3-based pyroelectric generator and temperature sensor. Journal of the Korean Physical Society, 2015, 66(4): 713-716.
[89] J. Zheng and Y. Tu. Based on GSM wireless fire alarm system. International Journal of Computer Applications, 2016, 133(9): 38-40.
[90] Haidong Xu, , et al. Ceiling mount intrusion detector with arbitrary direction detection capability. U.S. Patent No. 9,830,789. 28, 2017.
[91] V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello and F. K. Tittel. THz Quartz-enhanced photoacoustic sensor for H 2 S trace gas detection. Optics Express, 2015, 23(6): 7574-7582.
[92] M. Dong, G. Q. Zhong, S. Z. Miao, C. T. Zheng and Y. D. Wang. CO and CO 2 dual-gas detection based on mid-infrared wideband absorption spectroscopy. Optoelectronics Letters, 2018, 14(2): 119-123.
[93] G. P. Eppeldauer, V. B. Podobedov, L. M. Hanssen and C. C. Cooksey. Low-NEP pyroelectric detectors for calibration of UV and IR sources and detectors. International Society for Optics and Photonics, 2017, 10378: 1037809.
[94] A. Steiger, W. Bohmeyer and K. Lange. Novel pyroelectric detectors applied for precise THz power measurements. OSA CLEO: QELS_Fundamental Science, 2016.
[95] R. Müller, B. Gutschwager, J. Hollandt, M. Kehrt, C.Monte, R.Müller and A.Steiger. Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(7): 654-661.
[96] L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P.Ying and X. Zhao. Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions. Advanced Energy Materials, 2015, 5(17): 1500411.
[97] M. Romdhane, C. Gourdon, and G. Casamatta. Development of a thermoelectric sensor for ultrasonic intensity measurement. Ultrasonics, 1995, 33(2): 139-146.
[98] M. Müller, et al. A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor. Sensors and Actuators A: Physical, 1996, 54(1): 601-605.
[99] J. Eskandari. Thermoelectric cooler and temperature sensor subassembly with improved temperature control. U.S. Patent No. 5,522,225, 1996.
[100] B. Sothmann, R. Sánchez and A. N. Jordan, A. N. Thermoelectric energy harvesting with quantum dots. Nanotechnology, 2014, 26(3): 032001.
[101] F. J. DiSalvo. Thermoelectric cooling and power generation. Science, 1999, 285(5428): 703-706.
[102] D. Zhao and G. Tan. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1-2): 15-24.
[103] G. Min and D. M. Rowe. Cooling performance of integrated thermoelectric microcooler. Solid-State Electronics, 1999, 43(5): 923-929.
[104] Y. K. Ramadass and A. P. Chandrakasan. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE Journal of Solid-State Circuits, 2011, 46(1): 333-341.
[105] S. Priya and D. J. Inman, Eds. Energy harvesting technologies. New York: Springer, 2009, 21.
[106] J. P. Im, S. W. Wang, S. T. Ryu and G. H. Cho. A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. IEEE Journal of Solid-State Circuits, 2012, 47(12): 3055-3067.
[107] F.J. Zhang, et al. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nature Communications, 2015, 6: 8356.