Nonlinear Vibration Analysis of an Electrostatically Actuated Microbeam using Differential Transformation Method

Authors

  • M. G. Sobamowo Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria
  • A A. Yinusa Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria
  • O. A. Adesina Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria
  • O. M. Oyekeye Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria

DOI:

https://doi.org/10.30564/ssid.v2i2.1887

Abstract

In this paper, nonlinear vibration of electrostatically actuated microbeam is analyzed using differential transformation method.The high level of accuracy of the analytical solutions of the method was established through comparison of the results of the solutions of exact analytical method, variational approach, homotopy analysis method and energy balance methods. Also,with the aid of the present analytical solution, the time response, velocity variation and the phase plots of the system are presented graphically. It is hope that the method will be widely applied to more nonlinear problems of systems in various fields of study.

 

Keywords:

NARX-OBF Models; Genetic Algorithm; Levenberg Marquardt; System identification

References

[1] R. C. Batra, M. Porfiri, D. Spinello. Vibrations of narrow microbeams predeformed by an electric field,Journal of Sound and Vibration, 2008, 309: 600-612.

[2] G. I. Taylor. The coalescence of closely spaced drops when they are at different electric potentials, Proceedings of the Royal Society A, 1968, 306: 423-434.

[3] H. C. Nathanson, W. E. Newell, R. A. Wickstrom, J.R. Davis. The resonant gate transistor, IEEE Transactions on Electron Devices, 1967, 14(3): 117-133.

[4] P. M. Osterberg, Electrostatically Actuated Microelectromechanical Test Structures for Material Property Measurement, PhD Dissertation, MassachusettsInstituteofTechnology, 1995.

[5] M. H. Ghayesh, H. Farokhi. Chaotic motion of a parametrically excited microbeam. Int. J. Eng. Sci.,2015, 96: 34-45.

[6] M. H. Ghayesh. Functionally graded microbeams:Simultaneous presence of imperfection and viscoelasticity. Int. J. Mech. Sci., 2018, 140: 339-350.

[7] M. H. Ghayesh Dynamics of functionally graded viscoelastic microbeams. Int. J. Eng. Sci., 2018, 124:115-131.

[8] M. H. Ghayesh, H. Farokhi, A. Gholipour. Oscillations of functionally graded microbeams. Int. J. Eng.Sci., 2017, 110: 35-53.

[9] A. Gholipour, H. Farokhi, M. H. Ghayesh. In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn., 2015, 79: 1771-1785.

[10] M. H. Ghayesh, H. Farokhi. Nonlinear dynamics of microplates. Int. J. Eng. Sci., 2015, 86: 60-73.

[11] M. H. Ghayesh, H. Farokhi, A. Gholipour, M. Tavallaeinejad. Nonlinear oscillations of functionally graded microplates. Int. J. Eng. Sci., 2018, 122: 56-72.

[12] . H. Farokhi, M. H. Ghayesh, M. Amabili. Nonlinear resonant behaviour of microbeams over the buckled state. Appl. Phys. A, 2013, 113: 297-307.

[13] H. Farokhi, M. H. Ghayesh, M. Amabili. Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int. J.Eng. Sci. 2013, 68: 11-23.

[14] M. H. Ghayesh, H. Farokhi, M. Amabili. Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos. Part B Eng., 2013,50: 318-324.

[15] E. M. Abdel-Rahman, M. I. Younis, A. H. Nayfeh.Characterization of the mechanical behaviour of an electrically actuated microbeam. J. Microelectromech. Syst., 2002, 12: 759.

[16] A. H. Nayfeh, M. I. Younis, E. M. Abdel-Rahman.Dynamic pull-in phenomenon in MEMS resonators.Nonlinear Dyn., 2007, 48: 153-163.

[17] H. Samaali, F. Najar, S. Choura. Dynamic study of a capacitive MEMS switch with double clampedclamped microbeams. Shock Vib. 2014, 19: 807489.

[18] F. Najar, A. H. Nayfeh, E. M. Abdel-Rahman, S.Choura, S. EI-Borgi, Dynamics and global stability of beam-based electrostatic microactuators. J. Vib.Control, 2010, 16: 721-748.

[19] C. P. Vyasarayani, E. M. Abdel-Rahman, J. McPhee,S. Birkett. Modeling MEMS resonators past pull-in. J.Comput. Nonlinear Dyn., 2011, 6: 031008.

[20] V. Rochus, D. J. Rixen, J. C. Golinval. Electrostatic coupling of MEMS structures: transient simulations and dynamic pull-in. Nonlinear Analysis, 2005, 63:1619-e1633.

[21] Y. Fu, J. Zhang, L. Wan. Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS). Current Applied Physics, 2011, 11(3): 482-85.

[22] E. M. Abdel-Rahman, M. I. Younis, A. H. Nayfeh,Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micro mechanics and Microengineering, 2002, 12(6): 759-766.

[23] M. Moghimiz, M.T. Ahmadian, Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects, Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4):1664-1678.

[24] Y.H. Qian, D.X. Ren, S.K. Lai, S.M. Chen. Analytical approximations to nonlinear vibration of an electrostatically actuated microbeamCommun Nonlinear Sci Numer Simulat, 2012, 17: 1947-1955.

[25] M. Bayat, M. Bayat, I. Pakar. Nonlinear vibration of an electrostatically actuated microbeam. Latin American Journal of Solids and Structures, 2014, 11: 534-544.

Downloads

How to Cite

Sobamowo, M. G., Yinusa, A. A., Adesina, O. A., & Oyekeye, O. M. (2020). Nonlinear Vibration Analysis of an Electrostatically Actuated Microbeam using Differential Transformation Method. Semiconductor Science and Information Devices, 2(2), 1–4. https://doi.org/10.30564/ssid.v2i2.1887

Issue

Article Type

Article