Atmospheric Carbon Dioxide and Climate

Authors

  • Boris.M. Smirnov Joint Institute for High Temperatures RAS, Izhorskaya 13/19, Moscow 125412, Russia.

DOI:

https://doi.org/10.30564/jasr.v2i4.1838

Abstract

Atmospheric radiative fluxes are evaluated for the line-by-line model of spectral lines in considering the atmosphere as a weakly nonuniform plane layer and altitude profiles of its parameters are taken from the model of standard atmosphere. Concepts of molecular spectroscopy are combined with the local thermodynamic equilibrium for greenhouse gases and with information from HITRAN data base for parameters of radiative transitions. In addition, the energetic balance of the Earth allows one to determine the radiative flux from clouds. As a result, the algorithm is worked out for evaluation of the atmospheric radiative flux toward the Earth depending on its composition. We below concentrate on the change of atmospheric radiative fluxes as a result of doubling of the concentration of CO2 molecules. It is shown that the change of the global temperature in this case according to the above algorithm in 5-6 times exceeds that followed from climatological models which are based on old spectral data, rather than those from HITRAN data base. These codes ignore overlapping of spectral lines of atmospheric radiators.

Keywords:

Absorption coefficient; Cloud emission; Global temperature; Infrared radiation; Optical thickness; Radiative molecular transitions

References

[1] J.B.J.Fourier. Remarques générales sur les températures du globe terrestre et des espaces planétaires. Annales de Chimie et de Physique. 27, 136(1824).

[2] J.B.J. Fourier. Mémoire sur les températures du globe terrestre et des espaces planétaires. Mémoires de l'Académie Royale des Sciences 7, 569(1827).

[3] S.Arrhenius. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Phil. Mag.. 41, 237(1896)

[4] R.T.Pierrehumbert. Principles of Planetary Climate. (New York, Cambr.Univ.Press, 2010).

[5] R.T.Pierrehumbert. Infrared radiation and planetary temperature. Phys.Today January 2011, p.35.

[6] W.Zhong, J.D.Haigh. The greenhouse effect and carbon dioxide. Weather 68, 100(2013)

[7] B.M.Smirnov. Infrared Atmospheric Spectroscopy. (Berlin, de Gruyter, 2020)

[8] G.Herzberg. Molecular Spectra and Molecular Structure. (Princeton, Van Nostrand Reinhold, 1945)

[9] L.D.Landau, E.M.Lifshitz.. Quantum Mechanics. (Oxford, Pergamon Press, 1965)

[10] I.E.Gordon, L.S.Rothman, C.Hill et.al. JQSRT 203, 3(2017)

[11] M.Simeckova, D.Jacquemart, L.S.Rothman et.al. JQSRT 98, 130(2006)

[12] http://www.hitran.iao.ru/home

[13] http://www.hitran.org/links

[14] R.M. Goody. Atmospheric Radiation: Theoretical Basis. (London, Oxford Univ.Press, 1964).

[15] U.S. Standard Atmosphere. (Washington, U.S. Government Printing Office, 1976)

[16] Ya.B.Zel’dovich, Yu.P.Raizer. Physics of shock waves and high-temperature hydrodynamic phenomena. (New York, Acad.Press, 1966)

[17] B.M.Smirnov. Physics of Weakly Ionized Gases. (Moscow, Mir, 1980)

[18] B.M.Smirnov. Physics of Ionized Gases. (New York, Wiley, 2001)

[19] Understanding Climate Change. (Washington,Nat.Acad.Science, 1975)

[20] B.M.Smirnov. Introduction to Plasma Physics. (Moscow, Nauka,1975; in Russian) English version :Moscow, Mir, 1977.

[21] J.T.Kiehl, K.E.Trenberth. Bull.Am.Meteorol.Soc. 78, 197(1997)

[22] K.E.Trenberth, J.T.Fasullo, J.T.Kiehl. Bull.Am.Meteorol.Soc. 90, 311(2009)

[23] G.Kirchhoff, R.Bunsen. Annalen der Physik und Chemie 109, 275(1860)

[24] M.L.Salby. Physics of the Atmosphere and Climate. (Cambridge, Cambr.Univ.Press,2012)

[25] Intergovernmental Panel on Climate Change. Nature 501, 297;298(2013) ( http://www.ipcc.ch/pdf/assessment?report/ar5/wg1/WGIAR5-SPM-brochure-en.pdf )

[26] G.S.Calendar. Weather 4, 310(1949)

[27] G.N.Plass. Tellus VIII, 141(1956)

[28] G.N.Plass, D.I.Fivel. Quant.J.Roy.Met.Soc. 81, 48(1956)

[29] B.M.Smirnov. EPL 114, 24005(2016)

[30] B.M.Smirnov. Microphysics of Atmospheric Phenomena. (Switzerland, Springer At-mospheric Series, 2017)

[31] B.M.Smirnov. JETP 126, 446(2018)

[32] . B.M.Smirnov. J.Phys. D.Appl.Phys. 51, 214004(2018)

[33] V.P.Krainov, B.M.Smirnov. Atomic and Molecular Radiative Processes. (Switzerland,Springer Nature, 2019)

[34] B.M.Smirnov. High Temp. 57, 609(2019)

[35] Ch.D.Keeling. Tellus. 12, 200(1960).

[36] C.D.Keeling, R.B.Bacastow, A.E.Bainbridge et.al. Tellus 28, 538(1976)

[37] https://en.wikipedia.org/wiki/Mauna-Loa-Observatory

[38] http://www.esrl.noaa.gov/gmd/ccgg/trends

[39] J.E Hansen, D.Johnson, A.Lacis et al., Science, 213, 957(1981)

[40] J.Hansen, M.Sato, R.Ruedy. http://www.columbia.edu/ jeh1/mailing/2014/20140121-Temperature2013

[41] https://en.wikipedia.org/wiki/Global-temperature-record

[42] https://data.giss.nasa.gov/gistemp

[43] C.Le Quere et.al. Earth Syst.Sci.Data 10, 2141(2018)

[44] B.M.Smirnov. Physics of Global Atmosphere. (Dolgoprudnyi, Intellect, 2017; in Rus-sian)

[45] http://unfccc.int/resource/docs/2015/cop21

Downloads

How to Cite

Smirnov, B. (2019). Atmospheric Carbon Dioxide and Climate. Journal of Atmospheric Science Research, 2(4), 21–27. https://doi.org/10.30564/jasr.v2i4.1838

Issue

Article Type

Article