-
2446
-
2252
-
2242
-
1713
-
1665
Transport and Deposition of Saharan Dust Observed from Satellite Images and Ground Measurements
DOI:
https://doi.org/10.30564/jasr.v4i2.3165Abstract
Haboob occurrence strongly impacts the annual variability of airborne desert dust in North Africa. In fact, more dust is raised from erodible surfaces in the early summer (monsoon) season when deep convective storms are common but soil moisture and vegetation cover are low. On 27 June 2018, a large dust storm is initiated over North Africa associated with an intensive westward dust transport. Far away from emission sources, dust is transported over the Atlantic for the long distance. Dust plume is emitted by a strong surface wind and further becomes a type of haboob when it merges with the southwestward deep convective system in central Mali at 0200 UTC (27 June). We use satellite observations to describe and estimate the dust mass concentration during the event. Approximately 93% of emitted dust is removed the dry deposition from the atmosphere between sources (10°N–25°N; 1°W–8°E) and the African coast (6°N–21°N; 16°W–10°W). The convective cold pool has induced large economic and healthy damages, and death of animals in the northeastern side of Senegal. ERA5 reanalysis has shown that the convective mesoscale impacts strongly the climatological location of the Saharan heat low (SHL).
Keywords:
Dust; Haboob; Saharan air layerReferences
[1] Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (toms) Absorbing Aerosol Product. Reviews of Geophysics, 40(1), 2-1-2-31. https://doi.org/10.1029/2000RG000095
[2] Washington, R., Todd, M., Middleton, N. J., & Goudie, A. S. (2003). Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Annals of the Association of American Geographers, 93(2), 297-313.
[3] Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and transport. Earth-Science Reviews, 79(1), 73-100. https://doi.org/10.1016/j.earscirev.2006.06.004
[4] Engelstaedter, S., & Washington, R. (2007). Atmospheric controls on the annual cycle of North African dust. Journal of Geophysical Research: Atmospheres, 112(D3).
[5] Senghor, H., Machu, É., Hourdin, F., & Gaye, A. T. (2017). Seasonal cycle of desert aerosols in western Africa : Analysis of the coastal transition with passive and active sensors. Atmospheric Chemistry and Physics, 17(13), 8395-8410.
[6] Schepanski, K., Tegen, I., Todd, M., Heinold, B., Bönisch, G., Laurent, B., & Macke, A. (2009). Meteorological processes forcing Saharan dust emission inferred from MSG‐SEVIRI observations of subdaily dust source activation and numerical models. Journal of geophysical research: atmospheres, 114(D10).
[7] Senghor, H., Machu, É., Durán, L., Jenkins, G. S., & Gaye, A. T. (2020). Seasonal Behavior of Aerosol Vertical Concentration in Dakar and Role Played by the Sea-Breeze. Open Journal of Air Pollution, 9(1), 11-26. https://doi.org/10.4236/ojap.2020.91002
[8] Marsham, J. H., Hobby, M., Allen, C. J. T., Banks, J. R., Bart, M., Brooks, B. J., Cavazos‐Guerra, C., Engelstaedter, S., Gascoyne, M., Lima, A. R., Martins, J. V., McQuaid, J. B., O’Leary, A., Ouchene, B., Ouladichir, A., Parker, D. J., Saci, A., Salah‐ Ferroudj, M., Todd, M. C., & Washington, R. (2013). Meteorology and dust in the central Sahara : Observations from Fennec supersite-1 during the June 2011 Intensive Observation Period. Journal of Geophysical Research: Atmospheres, 118(10), 4069-4089. https://doi.org/10.1002/jgrd.50211
[9] Allen, C. J., Washington, R., & Engelstaedter, S. (2013). Dust emission and transport mechanisms in the central Sahara : Fennec ground‐based observations from Bordj Badji Mokhtar, June 2011. Journal of Geophysical Research: Atmospheres, 118(12), 6212-6232.
[10] Heinold, B., Knippertz, P., Marsham, J., Fiedler, S., Dixon, N., Schepanski, K., Laurent, B., & Tegen, I. (2013). The role of deep convection and nocturnal low‐level jets for dust emission in summertime West Africa : Estimates from convection‐permitting simulations. Journal of Geophysical Research: Atmospheres, 118(10), 4385-4400.
[11] Droegemeier, K. K., & Wilhelmson, R. B. (1987). Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. Journal of atmospheric sciences, 44(8), 1180-1210.
[12] Knippertz, P., Ansmann, A., Althausen, D., Müller, D., Tesche, M., Bierwirth, E., Dinter, T., Müller, T., Hoyningen-Huene, W. V., & Schepanski, K. (2009). Dust mobilization and transport in the northern Sahara during SAMUM 2006–a meteorological overview. Tellus B: Chemical and physical meteorology, 61(1), 12-31.
[13] Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P., & Tegen, I. (2013). Climatology of nocturnal low‐ level jets over North Africa and implications for modeling mineral dust emission. Journal of Geophysical Research: Atmospheres, 118(12), 6100-6121.
[14] Flamant, C., Chaboureau, J., Parker, D., Taylor, C., Cammas, J., Bock, O., Timouk, F., & Pelon, J. (2007). Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter‐tropical discontinuity region of the West African monsoon. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(626), 1175-1189.
[15] Karam, D. B., Flamant, C., Knippertz, P., Reitebuch, O., Pelon, J., Chong, M., & Dabas, A. (2008). Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity region : A representative case-study. Quarterly Journal of the Royal Meteorological Society, 134(632), 621-634. https://doi.org/10.1002/qj.244
[16] Roberts, A., & Knippertz, P. (2014). The formation of a large summertime Saharan dust plume : Convective and synoptic‐scale analysis. Journal of Geophysical Research: Atmospheres, 119(4), 1766-1785.
[17] Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D., Krol, M. C., … Zender, C. S. (2011). Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 11(15), 7781-7816. https://doi.org/10.5194/acp-11-7781-2011
[18] Kaufman, Y. J., Koren, I., Remer, L. A., Tanré, D., Ginoux, P., & Fan, S. (2005). Dust transport and deposition observed from the Terra‐Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 110(D10). https://doi.org/10.1029/2003JD004436
[19] Ben-Ami, Y., Koren, I., Rudich, Y., Artaxo, P., Martin, S., & Andreae, M. (2010). Transport of North African dust from the Bodélé depression to the Amazon Basin : A case study. Atmospheric Chemistry and Physics, 10(16), 7533-7544.
[20] Mortier, A., Goloub, P., Derimian, Y., Tanré, D., Podvin, T., Blarel, L., Deroo, C., Marticorena, B., Diallo, A., & Ndiaye, T. (2016). Climatology of aerosol properties and clear‐sky shortwave radiative effects using Lidar and Sun photometer observations in the Dakar site. Journal of Geophysical Research: Atmospheres, 121(11), 6489-6510.
[21] Petit, R., Legrand, M., Jankowiak, I., Molinié, J., Asselin de Beauville, C., Marion, G., & Mansot, J. (2005). Transport of Saharan dust over the Caribbean Islands : Study of an event. Journal of Geophysical Research: Atmospheres, 110(D18).
[22] Song, Z., Wang, J., & Wang, S. (2007). Quantitative classification of northeast Asian dust events. Journal of Geophysical Research: Atmospheres, 112(D4).
[23] Euphrasie-Clotilde, L., Plocoste, T., & Brute, F.-N. (2021). Particle Size Analysis of African Dust Haze over the Last 20 Years : A Focus on the Extreme Event of June 2020. Atmosphere, 12(4), 502.
[24] Sokolik, I. N., & Toon, O. B. (1996). Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381(6584), 681-683.
[25] Jickells, T., An, Z., Andersen, K. K., Baker, A., Bergametti, G., Brooks, N., Cao, J., Boyd, P., Duce, R., & Hunter, K. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. science, 308(5718), 67-71.
[26] Prospero, J. M., & Lamb, P. J. (2003). African droughts and dust transport to the Caribbean : Climate change implications. Science, 302(5647), 1024-1027.
[27] Stuut, J., Mulitza, S., & Prange, M. (2008). Challenges to Understanding Past and Future Climate in Africa : MARUM Workshop : Response of North African Ecosystems to Abrupt Climate Change; Bremen, Germany, 14–16 November 2007.
[28] Maher, B., Prospero, J., Mackie, D., Gaiero, D., Hesse, P. P., & Balkanski, Y. (2010). Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews, 99(1-2), 61-97.
[29] Prospero, J. M. (2006). Saharan dust impacts and climate change. Oceanography, 19(2), 60.
[30] Small, I., Van der Meer, J., & Upshur, R. (2001). Acting on an environmental health disaster : The case of the Aral Sea. Environmental Health Perspectives, 109(6), 547-549.
[31] Toure, N. O., Gueye, N. R. D., Mbow‐Diokhane, A., Jenkins, G. S., Li, M., Drame, M. S., Coker, K. A. R., & Thiam, K. (2019). Observed and modeled seasonal air quality and respiratory health in Senegal during 2015 and 2016. GeoHealth, 3(12), 423-442.
[32] Taheri, F., Forouzani, M., Yazdanpanah, M., & Ajili, A. (2020). How farmers perceive the impact of dust phenomenon on agricultural production activities : A Q-methodology study. Journal of Arid Environments, 173, 104028.
[33] Daniels, J. M., Gray, G., Wade, G., Schmit, T., Nelson III, J., Schreiner, A., & Holland, C. (2006). GOES sounder single field of view products. 4.
[34] Schmit, T. J., Goodman, S. J., Lindsey, D. T., Rabin, R. M., Bedka, K. M., Gunshor, M. M., Cintineo, J. L., Velden, C. S., Bachmeier, A. S., & Lindstrom, S. S. (2013). Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. Journal of Applied Remote Sensing, 7(1), 073462.
[35] Menzel, W. P., & Purdom, J. F. (1994). Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bulletin of the American Meteorological Society, 75(5), 757-782.
[36] Brindley, H., Knippertz, P., Ryder, C., & Ashpole, I. (2012). A critical evaluation of the ability of SEVIRI thermal IR RGB rendering to identify dust events. Part A: Theoretical analysis. J. Geophys. Res, 117, D07201.
[37] Gonzalez, L., & Briottet, X. (2017). North Africa and Saudi Arabia day/night sandstorm survey (NASCube). Remote Sensing, 9(9), 896.
[38] Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment, 66(1), 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
[39] Chu, D., Kaufman, Y., Ichoku, C., Remer, L., Tanré, D., & Holben, B. (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophysical research letters, 29(12), MOD2-1.
[40] Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N., Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V., Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kandler, K., Kristensen, T. B., Mayol-Bracero, O. L., Müller, T., Reitebuch, O., … Walser, A. (2017). The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment : Overview and Selected Highlights. Bulletin of the American Meteorological Society, 98(7), 1427-1451. https://doi.org/10.1175/BAMS-D-15-00142.1
[41] Winker, D. M. (2003). Accounting for multiple scattering in retrievals from space lidar. 5059, 128-139.
[42] Thomason, L. W., Pitts, M. C., & Winker, D. M. (2007). CALIPSO observations of stratospheric aerosols : A preliminary assessment. Atmospheric Chemistry and Physics, 7(20), 5283-5290.
[43] Noel, V., Chepfer, H., Ledanois, G., Delaval, A., & Flamant, P. H. (2002). Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio. Applied optics, 41(21), 4245-4257.
[44] Sassen, K. (1991). The polarization lidar technique for cloud research : A review and current assessment. Bulletin of the American Meteorological Society, 72(12), 1848-1866.
[45] Dubovik, O., Smirnov, A., Holben, B., King, M., Kaufman, Y., Eck, T., & Slutsker, I. (2000). Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres, 105(D8), 9791-9806.
[46] Murayama, T., Sugimoto, N., Uno, I., Kinoshita, K., Aoki, K., Hagiwara, N., Liu, Z., Matsui, I., Sakai, T., & Shibata, T. (2001). Ground‐based network observation of Asian dust events of April 1998 in east Asia. Journal of Geophysical Research: Atmospheres, 106(D16), 18345-18359.
[47] Liu, D., Wang, Z., Liu, Z., Winker, D., & Trepte, C. (2008). A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. Journal of Geophysical Research: Atmospheres, 113(D16).
[48] Draxler, R. R., & Hess, G. (1998). An overview of the HYSPLIT_4 modelling system for trajectories. Australian meteorological magazine, 47(4), 295-308.
[49] Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077.
[50] Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., & Schepers, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
[51] Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., & Hersbach, H. (2021). ERA5-Land : A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data Discussions, 1-50.
[52] Lavaysse, C., Flamant, C., Janicot, S., Parker, D. J., Lafore, J.-P., Sultan, B., & Pelon, J. (2009). Seasonal evolution of the West African heat low : A climatological perspective. Climate Dynamics, 33(2), 313-330. https://doi.org/10.1007/s00382-009-0553-4
[53] Evan, A. T., Heidinger, A. K., & Pavolonis, M. J. (2006). Development of a new over‐water Advanced Very High Resolution Radiometer dust detection algorithm. International Journal of Remote Sensing, 27(18), 3903-3924.
[54] Ramel, R., Gallée, H., & Messager, C. (2006). On the northward shift of the West African monsoon. Climate Dynamics, 26(4), 429-440.
[55] Parker, D. J., Thorncroft, C. D., Burton, R. R., & Diongue‐Niang, A. (2005). Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131(608), 1461-1482.
[56] Redmond, H. E., Dial, K. D., & Thompson, J. E. (2010). Light scattering and absorption by wind blown dust : Theory, measurement, and recent data. Aeolian Research, 2(1), 5-26.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2021 Author(s)
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.