Formation and Transport of a Saharan Dust Plume in Early Summer

Authors

  • Habib Senghor

    Agence Nationale de l’Aviation Civile et de la Météorologie, Dakar, 8184, Sénégal

  • Abdou L. Dieng

    Laboratoire de Physique de l’Atmosphère et de l’Océan Siméon-Fongang (LPAO-SF), Université Cheikh Anta Diop, Dakar, 10700, Sénégal

  • Moussa Gueye

    Département de Mathématiques et Informatiques, Université du Sine Saloum Elhadj Ibrahima Niass, Kaolack BP 55, Sénégal

  • Cheikh A. Diop

    Agence Nationale de l’Aviation Civile et de la Météorologie, Dakar, 8184, Sénégal

  • Mariane D. Kane

    Agence Nationale de l’Aviation Civile et de la Météorologie, Dakar, 8184, Sénégal

  • Amadou T. Gaye

    Laboratoire de Physique de l’Atmosphère et de l’Océan Siméon-Fongang (LPAO-SF), Université Cheikh Anta Diop, Dakar, 10700, Sénégal

DOI:

https://doi.org/10.30564/jasr.v6i2.5407
Received: 12 January 2023 | Revised: 06 April 2023 | Accepted: 10 April 2023 | Published Online: 14 April 2023

Abstract

This research studies the capability of the Weather Research and Forecasting model coupled with the Chemistry/Aerosol module (WRF-Chem) with and without parametrization to reproduce a dust storm, which was held on 27th June 2018 over Sahara region. The authors use satellite observations and ground-based measurements to evaluate the WRF-Chem simulations. The sensitivities of WRF-Chem Model are tested on the replication of haboob features with a tuned GOCART aerosol module. Comparisons of simulations with satellite and ground-based observations show that WRF-Chem is able to reproduce the Aerosol Optical Depth (AOD) distribution and associated changes of haboob in the meteorological fields with temperature drops of about 9 °C and wind gust 20 m·s–1. The WRF-Chem Convection-permitting model (CPM) shows strong 10-meter winds induced a large dust emission along the leading edge of a convective cold pool (LECCP). The CPM indicates heavy dust transported over the West African coast (16°W-10°W; 6°N-21°N) which has a potential for long-distance travel on 27th June between 1100 UTC and 1500 UTC. The daily precipitation is improved in the CPM with a spatial distribution similar to the GPM-IMERG precipitation and maximum rainfall located at the right place. As well as raising a large amount of dust, the haboob caused considerable damage along its route.

Keywords:

Dust storm, WRF-Chem, Convection-permitting, Parameterization, MCS

References

[1] Levin, Z., Ganor, E., Gladstein, V., 1996. The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. Journal of Applied Meteorology and Climatology. 35(9), 1511-1523.

[2] Wurzler, S., Reisin, T.G., Levin, Z., 2000. Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. Journal of Geophysical Research: Atmospheres. 105(D4), 4501-4512.

[3] Rosenfeld, D., Rudich, Y., Lahav, R., 2001. Desert dust suppressing precipitation : A possible desertification feedback loop. Proceedings of the National Academy of Sciences. 98(11), 5975-5980.

[4] Martínez, I.R., Chaboureau, J.P., 2018. Precipitation and mesoscale convective systems : Radiative impact of dust over northern Africa. Monthly Weather Review. 146(9), 3011-3029.

[5] Camara, M., Jenkins, G., Konare, A., 2010. Impacts of dust on West African climate during 2005 and 2006. Atmospheric Chemistry and Physics Discussions. 10(2), 3053-3086.

[6] Kocha, C., Lafore, J., Tulet, P., et al., 2012. High-resolution simulation of a major West African dust-storm : Comparison with observations and investigation of dust impact. Quarterly Journal of the Royal Meteorological Society. 138(663), 455-470.

[7] Chaboureau, J., Tulet, P., Mari, C., 2007. Diurnal cycle of dust and cirrus over West Africa as seen from Meteosat Second Generation satellite and a regional forecast model. Geophysical Research Letters. 34(2).

[8] Janiga, M.A., Thorncroft, C.D., 2014. Convection over tropical Africa and the east Atlantic during the West African monsoon : Regional and diurnal variability. Journal of Climate. 27(11), 4159-4188.

[9] Mathon, V., Laurent, H., Lebel, T., 2002. Mesoscale convective system rainfall in the Sahel. Journal of Applied Meteorology. 41(11), 1081-1092.

[10] Roberts, A., Knippertz, P., 2014. The formation of a large summertime Saharan dust plume : Convective and synoptic-scale analysis. Journal of Geophysical Research: Atmospheres. 119(4), 1766-1785.

[11] Lin, Y.L., 2007. Mesoscale convective systems. Mesoscale dynamics. Cambridge University Press: Cambridge. pp. 322-378.

[12] DOI: https://doi.org/10.1017/CBO9780511619649.010

[13] Finney, D.L., Marsham, J.H., Rowell, D.P., et al., 2020. Effects of explicit convection on future projections of mesoscale circulations, rainfall, and rainfall extremes over Eastern Africa. Journal of Climate. 33(7), 2701-2718.

[14] Birch, C., Parker, D., Marsham, J., et al., 2014. A seamless assessment of the role of convection in the water cycle of the West African monsoon. Journal of Geophysical Research: Atmospheres. 119(6), 2890-2912.

[15] Marsham, J.H., Dixon, N.S., Garcia-Carreras, L., et al., 2013. The role of moist convection in the West African monsoon system : Insights from continental-scale convection-permitting simulations. Geophysical Research Letters. 40(9), 1843-1849.

[16] Marsham, J.H., Knippertz, P., Dixon, N.S., et al., 2011. The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophysical Research Letters. 38(16).

[17] Pope, R., Marsham, J., Knippertz, P., et al., 2016. Identifying errors in dust models from data assimilation. Geophysical Research Letters. 43(17), 9270-9279.

[18] Hohenegger, C., Schlemmer, L., Silvers, L., 2015. Coupling of convection and circulation at various resolutions. Tellus A: Dynamic Meteorology and Oceanography. 67(1), 26678.

[19] Prein, A.F., Langhans, W., Fosser, G., et al., 2015. A review on regional convection-permitting climate modeling : Demonstrations, prospects, and challenges. Reviews of Geophysics. 53(2), 323-361.

[20] Crook, J., Klein, C., Folwell, S., et al., 2019. Assessment of the representation of West African storm lifecycles in convection-permitting simulations. Earth and Space Science. 6(5), 818-835.

[21] Stratton, R.A., Senior, C.A., Vosper, S.B., et al., 2018. A pan-African convection-permitting regional climate simulation with the Met Office Unified Model : CP4-Africa. Journal of Climate. 31(9), 3485-3508.

[22] Jackson, L.S., Keane, R.J., Finney, D.L., et al., 2019. Regional differences in the response of rainfall to convectively coupled Kelvin waves over tropical Africa. Journal of Climate. 32(23), 8143-8165.

[23] Trzeciak, T.M., Garcia-Carreras, L., Marsham, J.H., 2017. Cross-Saharan transport of water vapor via recycled cold pool outflows from moist convection. Geophysical Research Letters. 44(3), 1554-1563.

[24] Brindley, H., Knippertz, P., Ryder, C., et al., 2012. A critical evaluation of the ability of SEVIRI thermal IR RGB rendering to identify dust events. Part A: Theoretical analysis. Geophysical Research Letters. 117, D07201.

[25] Sayer, A., Munchak, L., Hsu, N., et al., 2014. MODIS Collection 6 aerosol products : Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres. 119(24), 13-965.

[26] Clarisse, L., Coheur, P.F., Prata, F., et al., 2013. A unified approach to infrared aerosol remote sensing and type specification. Atmospheric Chemistry and Physics. 13(4), 2195-2221.

[27] Hsu, N., Jeong, M., Bettenhausen, C., et al., 2013. Enhanced Deep Blue aerosol retrieval algorithm : The second generation. Journal of Geophysical Research: Atmospheres. 118(16), 9296-9315.

[28] Sayer, A., Hsu, N., Lee, J., et al., 2018. Satellite Ocean Aerosol Retrieval (SOAR) algorithm extension to S-NPP VIIRS as part of the “Deep Blue” aerosol project. Journal of Geophysical Research: Atmospheres. 123(1), 380-400.

[29] Wei, G., Lü, H., Crow, W.T., et al., 2018. Comprehensive evaluation of GPM-IMERG, CMORPH, and TMPA precipitation products with gauged rainfall over mainland China. Advances in Meteorology. 3024190.

[30] Hersbach, H., Bell, B., Berrisford, P., et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 146(730), 1999-2049.

[31] Grell, G.A., Peckham, S.E., Schmitz, R., et al., 2005. Fully coupled “online” chemistry within the WRF model. Atmospheric Environment. 39(37), 6957-6975.

[32] Ginoux, P., Chin, M., Tegen, I., et al., 2001. Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research: Atmospheres. 106(D17), 20255-20273.

[33] Hong, S.Y., Noh, Y., Dudhia, J., 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review. 134(9), 2318-2341.

[34] Chen, F., Dudhia, J., 2001. Coupling an advanced land surface-hydrology model with the Penn State—NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review. 129(4), 569-585.

[35] Jiménez, P.A., Dudhia, J., González-Rouco, J.F., et al., 2012. A revised scheme for the WRF surface layer formulation. Monthly Weather Review. 140(3), 898-918.

[36] Iacono, M.J., Delamere, J.S., Mlawer, E.J., et al., 2008. Radiative forcing by long-lived greenhouse gases : Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres. 113(D13).

[37] Mlawer, E.J., Taubman, S.J., Brown, P.D., et al., 1997. Radiative transfer for inhomogeneous atmospheres : RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres. 102(D14), 16663-16682.

[38] Grell, G.A., Dévényi, D., 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters. 29(14), 381-384.

[39] Hong, S.Y., Dudhia, J., Chen, S.H., 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review. 132(1), 103-120.

[40] Jenkins, G.S., Gueye, M., 2018. WRF 1960-2014 winter season simulations of particulate matter in the Sahel : Implications for air quality and respiratory health. GeoHealth. 2(8), 248-260.

[41] Khan, B., Stenchikov, G., Weinzierl, B., et al., 2015. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan mineral dust experiment in North Africa. Tellus B: Chemical and Physical Meteorology. 67(1), 27170.

[42] Ukhov, A., Mostamandi, S., da Silva, A., et al., 2020. Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations. Atmospheric Chemistry and Physics. 20(15), 9281-9310.

[43] Senghor, H., Roberts, A.J., Dieng, A.L., et al., 2021. Transport and deposition of Saharan dust observed from satellite images and ground measurements. Journal of Atmospheric Science Research. 4(2), 1-11.

[44] Allen, C.J., Washington, R., Engelstaedter, S., 2013. Dust emission and transport mechanisms in the central Sahara : Fennec ground-based observations from Bordj Badji Mokhtar, June 2011. Journal of Geophysical Research: Atmospheres. 118(12), 6212-6232.

[45] Washington, R., Bouet, C., Cautenet, G., et al., 2009. Dust as a tipping element : The Bodélé Depression, Chad. Proceedings of the National Academy of Sciences. 106(49), 20564-20571.

[46] Alonso-Pérez, S., Cuevas, E., Querol, X., et al., 2012. African dust source regions for observed dust outbreaks over the subtropical Eastern North Atlantic region, above 25 N. Journal of Arid Environments. 78, 100-109.

[47] Westphal, D.L., Toon, O.B., Carlson, T.N., 1987. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms. Journal of Geophysical Research: Atmospheres. 92(D3), 3027-3049.

[48] Kousky, V.E., 1988. Pentad outgoing longwave radiation climatology for the South American sector. Revista Brasileira de Meteorologia. 3(1), 217-231.

[49] Mortier, A., Goloub, P., Derimian, Y., et al., 2016. Climatology of aerosol properties and clear-sky shortwave radiative effects using Lidar and Sun photometer observations in the Dakar site. Journal of Geophysical Research: Atmospheres. 121(11), 6489-6510.

Downloads

How to Cite

Senghor, H., Dieng, A. L., Gueye, M., Diop, C. A., Kane, M. D., & Gaye, A. T. (2023). Formation and Transport of a Saharan Dust Plume in Early Summer. Journal of Atmospheric Science Research, 6(2), 58–74. https://doi.org/10.30564/jasr.v6i2.5407

Issue

Article Type

Article