-
2446
-
2252
-
2242
-
1713
-
1665
Evaluation of COSMO-CLM Model Parameter Sensitivity in the Study of Extreme Events across the Eastern Region of India
DOI:
https://doi.org/10.30564/jasr.v7i2.6226Abstract
The present study aims to identify the parameters from the Consortium for Small-scale Modelling in CLimate Mode (COSMO-CLM) regional climate model that strongly controls the prediction of extreme events over West Bengal and the adjoining areas observed between 2013 to 2018. Metrics, namely Performance Score (PS) screen out the most persuasive parameter on model output. Additionally, the Performance Index (PI) measure the reliability of the model and Skill Score (SS) establishes the model performance against the reference simulation leading to the optimization of the model for a given variable. In this study, parameter screening for four output variables such as 2m-temperature, surface latent heat flux, precipitation and cloud cover of COSMO-CLM is accomplished. For heat wave simulations, 2m-temperature and surface latent heat flux are explored whereas cloud cover and precipitation are examined for extreme rainfall events. A total of 25 adjustable parameters representing the following parameterization schemes: turbulence, land surface process, microphysics, convection, radiation and soil. Out of the six parameterization schemes, the scaling factor of the laminar boundary layer for heat (rlam_heat) and the ratio of laminar scaling factors for heat over sea and land (rat_sea) from the land surface process is sensitive to SLH, TP. The exponent to get the effective surface area (e_surf) from the land surface has a large impact on 2m-temperature. A few parameters from microphysics (cloud ice threshold for auto conversion), convection (mean entrainment rate for shallow convection) and radiation (parameter for computing the amount of cloud cover in saturated conditions) play a significant role in producing TP, and TCC fields. It is evident from the results that the parameter sensitivities on model performance depend on the choice of the meteorological field. Furthermore, in almost all input model parameters, the model performance reveals the opposite character in different domains for a given meteorological field.
Keywords:
India; Climate models; Model sensitivity; COSMO-CLM; Model evaluationReferences
[1] Pai, D., Nair, S.A., Ramanathan, A., 2013. Long term climatology and trends of heat waves over India during the recent 50 years (1961–2010). Mausam. 64(4), 585–604. DOI: https://doi.org/10.54302/mausam.v64i4.742
[2] Jaswal, A., Rao, P., Singh, V., 2015. Climatology and trends of summer high temperature days in India during 1969–2013. Journal of Earth System Science. 124(1), 1–15. DOI: https://doi.org/10.1007/s12040-014-0535-8
[3] Rohini, P., Rajeevan, M., Srivastava, A., 2016. On the variability and increasing trends of heat waves over India. Scientific Reports. 6(1), 1–9. DOI: https://doi.org/10.1038/srep26153
[4] Rohini, P., Rajeevan, M., Mukhopadhay, P., 2019. Future projections of heat waves over India from CMIP5 models. Climate Dynamics. 53(1), 975–988. DOI: https://doi.org/10.1007/s00382-019-04700-9
[5] Rajeevan, M., Bhate, J., Jaswal, A.K., 2008. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters. 35(23). DOI: https://doi.org/10.1029/2008GL035143
[6] De U.S., Dube, R.K., Rao, G.P., 2005. Extreme weather events over India in the last 100 years. Environmental Science, Geography, Economics. 131542400.
[7] Singh, A., Patwardhan, A., 2012. Spatio-temporal distribution of extreme weather events in India. APCBEE Procedia. 1, 258–262. DOI: https://doi.org/10.1016/j.apcbee.2012.03.042
[8] Singh, K., Albert, J., Bhaskaran, P.K., Alam, P., 2021. Assessment of extremely severe cyclonic storms over Bay of Bengal and performance evaluation of ARW model in the prediction of track and intensity. Theoretical and Applied Climatology. 143(3), 1181–1194. DOI: https://doi.org/10.1007/s00704-020-03510-y
[9] Yu, Y., Mainuddin, M., Maniruzzaman, M., et al., 2019. Rainfall and temperature characteristics in the coastal zones of Bangladesh and West Bengal, India. Journal of the Indian Society of Coastal Agricultural Research. 37(2), 12–23.
[10] Cyclone Amphan Led to $14 Billion Economic Losses, Says Global Report [Internet] [cited on 2020 Dec 04]. Available from: https://www.hindustantimes.com/india-news/cyclone-amphan-led-to-14-billion-economic-losses-says-global-report/story-FWbYlDCccVSgIDNna93W5L.html
[11] Ahammed, K.B., Pandey, A.C., 2021. Characterization and impact assessment of super cyclonic storm AMPHAN in the Indian subcontinent through space borne observations. Ocean and Coastal Management. 205, 105532. DOI: https://doi.org/10.1016/j.ocecoaman.2021.105532
[12] Majumdar, B., DasGupta, S., 2020. Let Bengal be heard: Dealing with Covid and cyclone amphan together. South Asian History and Culture. 11(3), 317–322. DOI: https://doi.org/10.1080/19472498.2020.1780063
[13] Mishra, A.K., Vanganuru, N., 2020. Monitoring a tropical super cyclone Amphan over Bay of Bengal and nearby region in May 2020. Remote Sensing Applications: Society and Environment. 20, 100408. DOI: https://doi.org/10.1016/j.rsase.2020.100408
[14] Paul, S., Chowdhury S., 2021. Investigation of the character and impact of tropical cyclone Yaas: A study over coastal districts of West Bengal, India. Safety in Extreme Environments. 3, 219–235. DOI: https://doi.org/10.1007/s42797-021-00044-y
[15] Raju, S., Dash, G., Ghosh, S., et al., 2020. Impact of Cyclone Amphan on marine fisheries of West Bengal. Marine Fisheries Information Service Technical and Extension Series No 244, 2020. 244, 30–31.
[16] Sen, S., 2021. Combating tropical cyclones amphan, yaas and after: Eco-restoration of coastal zones. Harvest. 6(1), 33–38.
[17] Singh, K., Albert J., Bhaskaran P.K., et al., 2021. Numerical simulation of an extremely severe cyclonic storm over the Bay of Bengal using WRF modelling system: Influence of model initial condition. Modeling Earth Systems and Environment. 7, 2741–2752. DOI: https://doi.org/10.1007/s40808-020-01069-1
[18] Kumar, A., Singh, D., 2021. Heat stroke-related deaths in India: An analysis of natural causes of deaths, associated with the regional heatwave. Journal of Thermal Biology. 95, 102792. DOI: https://doi.org/10.1016/j.jtherbio.2020.102792
[19] Mahapatra, B., Walia, M., Saggurti, N., 2018. Extreme weather events induced deaths in India 2001–2014: Trends and differentials by region, sex and age group. Weather and Climate Extremes. 21, 110–116. DOI: https://doi.org/10.1016/j.wace.2018.08.001
[20] Mishra, V., Kumar, D., Ganguly, A.R., et al., 2014. Reliability of regional and global climate models to simulate precipitation extremes over India. Journal of Geophysical Research: Atmospheres. 119(15), 9301–9323. DOI: https://doi.org/10.1002/2014JD021636
[21] Ray, K., Giri, R., Ray, S., et al., 2021. An assessment of long-term changes in mortalities due to extreme weather events in India: A study of 50 years’ data, 1970–2019. Weather and Climate Extremes. 32, 100315. DOI: https://doi.org/10.1016/j.wace.2021.100315
[22] Azhar, G.S., Mavalankar, D., Nori-Sarma, A., et al., 2014. Heat-related mortality in India: Excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS One. 9(3), e91831. DOI: https://doi.org/10.1371/journal.pone.0091831
[23] Dubey, A.K., Kumar, P., 2023. Future projections of heatwave characteristics and dynamics over India using a high-resolution regional earth system model. Climate Dynamics. 60(1–2), 127–145. DOI: https://doi.org/10.1007/s00382-022-06309-x
[24] Dubey, A.K., Lal ., Kumar, P., et al., 2021. Present and future projections of heatwave hazard-risk over India: A regional earth system model assessment. Environmental Research. 201, 111573. DOI: https://doi.org/10.1016/j.envres.2021.111573
[25] Bucchignani, E., Montesarchio, M., Cattaneo, L., et al., 2014. Regional climate modeling over China with COSMO‐CLM: Performance assessment and climate projections. Journal of Geophysical Research: Atmospheres. 119(21), 12, 151–112, 170. DOI: https://doi.org/10.1002/2014JD022219
[26] Sørland, S.L., Brogli, R., Pothapakula, P.K., et al., 2021. COSMO-CLM regional climate simulations in the CORDEX framework: A review. Geoscientific Model Development Discussions. 14(8), 5125–5154. DOI: https://doi.org/10.5194/gmd-14-5125-2021
[27] Singh, S., Mall, R., Dadich, J., et al., 2021. Evaluation of CORDEX-South Asia regional climate models for heat wave simulations over India. Atmospheric Research. 248, 105228. DOI: https://doi.org/10.1016/j.atmosres.2020.105228
[28] Russo, E., Kirchner, I., Pfahl, S., et al., 2019. Sensitivity studies with the regional climate model COSMO-CLM 5.0 over the CORDEX Central Asia Domain. Geoscientific Model Development. 12(12), 5229–5249. DOI: https://doi.org/10.5194/gmd-12-5229-2019
[29] Zhou, W., Tang, J., Wang, X., et al., 2016. Evaluation of regional climate simulations over the CORDEX-EA-II domain using the COSMO-CLM model. Asia-Pacific Journal of Atmospheric Sciences. 52(2), 107–127.
[30] Wang, D., Menz, C., Simon, T., et al., 2013. Regional dynamical downscaling with CCLM over East Asia. Meteorology and Atmospheric Physics. 121(1), 39–53. DOI: https://doi.org/10.1007/s00703-013-0250-z
[31] Hourdin, F., Mauritsen, T., Gettelman, A., et al., 2017. The art and science of climate model tuning. Bulletin of the American Meteorological Society. 98(3), 589–602. DOI: https://doi.org/10.1175/BAMS-D-15-00135.1
[32] Knutti, R., Stocker, T.F., Joos, F., et al., 2002. Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature. 416, 719–723. DOI: https://doi.org/10.1038/416719a
[33] Voudouri, A., Khain, P., Carmona, I., et al., 2017. Objective calibration of numerical weather prediction models. Atmospheric Research. 190, 128–140. DOI: https://doi.org/10.1016/j.atmosres.2017.02.007
[34] Bucchignani, E., Cattaneo, L., Panitz, H.J., et al., 2016. Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain. Meteorology and Atmospheric Physics. 128(1), 73–95. DOI: https://doi.org/10.1007/s00703-015-0403-3
[35] Bellprat, O., Kotlarski, S., Lüthi, D., et al., 2016. Objective calibration of regional climate models: Application over Europe and North America. Journal of Climate. 29(2), 819–838. DOI: https://doi.org/10.1175/JCLI-D-15-0302.1
[36] Bhatla, R., Verma, S., Ghosh, S., et al., 2020. Performance of regional climate model in simulating Indian summer monsoon over Indian homogeneous region. Theoretical and Applied Climatology. 139(3), 1121–1135. DOI: https://doi.org/10.1007/s00704-019-03045-x
[37] Annan, J., Hargreaves, J., 2007. Efficient estimation and ensemble generation in climate modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 365(1857), 2077–2088. DOI: https://doi.org/10.1098/rsta.2007.2067
[38] Bellprat, O., Kotlarski, S., Lüthi, D., et al., 2012. Objective calibration of regional climate models. Journal of Geophysical Research: Atmospheres. 117(D23). DOI: https://doi.org/10.1029/2012JD018262
[39] Russo E., Sørland S.L., Kirchner I., et al., 2020. Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain. Geoscientific Model Development. 13(11), 5779–5797. DOI: https://gmd.copernicus.org/articles/13/5779/2020/
[40] Bellprat, O., Kotlarski, S., Lüthi, D., et al., 2012. Exploring perturbed physics ensembles in a regional climate model. Journal of Climate. 25(13), 4582–4599.
[41] Neelin, J.D., Bracco, A., Luo, H., et al., 2010. Considerations for parameter optimization and sensitivity in climate models. Proceedings of the National Academy of Sciences. 107(50), 21349–21354.
[42] Adinolfi, M., Raffa, M., Reder, A., et al., 2021. Evaluation and expected changes of summer precipitation at convection permitting scale with COSMO-CLM over alpine space. Atmosphere. 12(1), 54. DOI: https://doi.org/10.3390/atmos12010054
[43] Ahrens, B., Dobler, A., 2010. Analysis of the Indian summer monsoon system in the regional climate model COSMO-CLM. EGU General Assembly Conference Abstracts. 115(D16). DOI: https://doi.org/10.1029/2009JD013497
[44] Ahrens, B., Meier T., Brisson, E., 2020. Diurnal cycle of precipitation in the himalayan foothills–observations and model results. Himalayan Weather and Climate and their Impact on the Environment. 73–89. DOI: https://doi.org/10.1007/978-3-030-29684-1_5
[45] Bucchignani, E., Montesarchio, M., Zollo, A.L., et al., 2016. High‐resolution climate simulations with COSMO‐CLM over Italy: Performance evaluation and climate projections for the 21st century. International Journal of Climatology. 36(2), 735–756. DOI: https://doi.org/10.1002/joc.4379
[46] Di, Z., Duan, Q., Gong, W., et al., 2015. Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area. Geophysical Research Letters. 42(2), 579–587. DOI: https://doi.org/10.1002/2014GL061623
[47] Quan, J., Di, Z., Duan, Q., et al., 2016. An evaluation of parametric sensitivities of different meteorological variables simulated by the WRF model. Quarterly Journal of the Royal Meteorological Society. 142(700), 2925–2934. DOI: https://doi.org/10.1002/qj.2885
[48] Chinta, S., Yaswanth Sai, J., Balaji, C., 2021. Assessment of WRF model parameter sensitivity for high‐intensity precipitation events during the Indian summer monsoon. Earth and Space Science. 8(6), e2020EA001471. DOI: https://doi.org/10.1029/2020EA001471
[49] Rockel, B., Geyer, B., 2008. The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorologische Zeitschrift. 17(4), 487–498. DOI: https://doi.org/10.1127/0941-2948/2008/0297
[50] Rockel, B., Will, A., Hense, A., 2008. The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift. 17(4), 347–348. DOI: https://doi.org/10.1127/0941-2948/2008/0309
[51] Schättler, U., Doms, G., Schraff, C., 2008. A description of the nonhydrostatic regional COSMO-model part VII: User's guide. Deutscher Wetterdienst: Offenbach, Germany.
[52] Doms, D., Förstner, J., Heise, E., et al., 2011. A description of the nonhydrostatic regional COSMO-model, Part II: Physical parameterization. Deutscher Wetterdienst: Offenbach, Germany.
[53] Dee, D.P., Uppala, S.M., Simmons, A., et al., 2011. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society. 137(656), 553–597. DOI: https://doi.org/10.1002/qj.828
[54] Tiedtke, M., 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review. 117(8), 1779–1800. DOI: https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
[55] Tegen, I., Hollrig, P., Chin, M., et al., 1997. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. Journal of Geophysical Research: Atmospheres. 102(D20), 23895–23915. DOI: https://doi.org/10.1029/97JD01864
[56] Asharaf, S., Ahrens, B., 2013. Soil‐moisture memory in the regional climate model COSMO‐CLM during the Indian summer monsoon season. Journal of Geophysical Research: Atmospheres. 118(12), 6144–6151. DOI: https://doi.org/10.1002/jgrd.50429
[57] Dobler, A., Ahrens, B., 2011. Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO‐CLM. Journal of Geophysical Research: Atmospheres. 116(D24). DOI: https://doi.org/10.1029/2011JD016329
[58] Fallah, B., Russo, E., Acevedo, W., et al., 2018. Towards high-resolution climate reconstruction using an off-line data assimilation and COSMO-CLM 5.00 model. Climate of the Past. 14(9), 1345–1360. DOI: https://doi.org/10.5194/cp-14-1345-2018
[59] Huang, J., Wang, Y., Fischer, T., et al., 2017. Simulation and projection of climatic changes in the Indus River Basin, using the regional climate model COSMO‐CLM. International Journal of Climatology. 37(5), 2545–2562. DOI: https://doi.org/10.1002/joc.4864
[60] Platonov, V., Varentsov, M., 2021. Introducing a new detailed long-term COSMO-CLM hindcast for the Russian arctic and the first results of its evaluation. Atmosphere. 12(3), 350. DOI: https://doi.org/10.3390/atmos12030350
[61] Cherubini, F., Huang, B., Hu, X., et al., 2018. Quantifying the climate response to extreme land cover changes in Europe with a regional model. Environmental Research Letters. 13(7), 074002. DOI: https://doi.org/10.1088/1748-9326/aac794
[62] Asis, M., Saon, B., Monotosh Das, B., et al., 2016. Extreme weather events and trends of climatic variable in West Bengal: analysis and occurrence. AICPAM-NICRA (Mohanpur Centre): Kalyani, Nadia.
[63] Hersbach, H., Bell, B., Berrisford, P., et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 146(730), 1999–2049. DOI: https://doi.org/10.1002/qj.3803
[64] Hoffmann, L., Günther, G., Li, D., et al., 2019. From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations. Atmospheric Chemistry and Physics. 19(5), 3097–3124. DOI: https://doi.org/10.5194/acp-19-3097-2019
[65] Mahto, S.S., Mishra, V., 2019. Does ERA‐5 outperform other reanalysis products for hydrologic applications in India? Journal of Geophysical Research: Atmospheres. 124(16), 9423–9441. DOI: https://doi.org/10.1029/2019JD031155
[66] Huffman GJ, Bolvin DT, Nelkin EJ, Tan J. Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. Nasa/Gsfc Code 2015; 612(47):2019.
[67] Murphy, A.H., 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review. 116(12), 2417–2424. DOI: https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
[68] Murphy, J.M., Booth, B.B., Collins, M., et al., 2007. A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 365(1857), 1993–2028. DOI: https://doi.org/10.1098/rsta.2007.2077
[69] Murphy, J.M., Sexton, D.M., Barnett, D.N., et al., 2004. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature. 430(7001), 768–772. DOI: https://doi.org/10.1038/nature02771
[70] Wilks, D.S., 2011. Statistical methods in the atmospheric sciences. Elsevier: Berkeley, CA. DOI: https://doi.org/10.1016/C2017-0-03921-6
[71] Baki, H., Chinta, S., Balaji, C., et al., 2021. Determining the sensitive parameters of WRF model for the prediction of tropical cyclones in the Bay of Bengal using global sensitivity analysis and machine learning. Geoscientific Model Development Discussions. 1–46.
[72] Baki, H., Chinta, S., Balaji, C., et al., 2021. A sensitivity study of WRF model microphysics and cumulus parameterization schemes for the simulation of tropical cyclones using GPM radar data. Journal of Earth System Scien. 130, 4, 1–30.
[73] Chinta, S., Balaji, C., 2020. Calibration of WRF model parameters using multiobjective adaptive surrogate model-based optimization to improve the prediction of the Indian summer monsoon. Climate Dynamics. 55, 3, 631–650.
[74] Cerenzia, I., Tampieri, F., Tesini, M.S., 2014. Diagnosis of turbulence schema in stable atmospheric conditions and sensitivity tests. Cosmo Newsletter. 14, 1–11.
[75] Bellprat, O., 2013. Parameter uncertainty and calibration of regional climate models [PhD thesis]. Zürich: ETH Zurich.
[76] Voudouri, A., Khain, P., Carmona, I., et al., 2018. Optimization of high resolution COSMO model performance over Switzerland and Northern Italy. Atmospheric Research. 213, 70–85. DOI: https://doi.org/10.1016/j.atmosres.2018.05.026
[77] Thévenot, O., Bouin, M.N., Ducrocq, V., et al., 2016. Influence of the sea state on Mediterranean heavy precipitation: A case‐study from HyMeX SOP1. Quarterly Journal of the Royal Meteorological Society. 142, 377–389. DOI: https://doi.org/10.1002/qj.2660
[78] Carlsson, B., Papadimitrakis, Y., Rutgersson, A., 2010. Evaluation of a roughness length model and sea surface properties with data from the Baltic Sea. Journal of Physical Oceanography. 40(9), 2007–2024. DOI: https://doi.org/10.1175/2010JPO4340.1
[79] Rougier, J., Sexton, D.M., Murphy, J.M., et al., 2009. Analyzing the climate sensitivity of the HadSM3 climate model using ensembles from different but related experiments. Journal of Climate. 22(13), 3540–3557. DOI: https://doi.org/10.1175/2008JCLI2533.1
[80] Klocke, D., Pincus, R., Quaas, J., 2011. On constraining estimates of climate sensitivity with present-day observations through model weighting. Journal of Climate. 24(23), 6092–6099. DOI: https://doi.org/10.1175/2011JCLI4193.1
[81] Buzzi, M., Rotach, M., Raschendorfer, M., et al., 2011. Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteorologische Zeitschrift (Berlin). 20(3), 335–350. DOI: https://doi.org/10.1127/0941-2948/2011/0050
[82] Bachner, S., Kapala, A., Simmer, C., 2008. Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations. Meteorologische Zeitschrift. 17(4), 407–419. DOI: https://doi.org/10.1127/0941-2948/2008/0300
[83] Zhao, Q., Carr, F.H., 1997. A prognostic cloud scheme for operational NWP models. Monthly Weather Review. 125(8), 1931–1953. DOI: https://doi.org/10.1175/1520-0493(1997)125<1931:APCSFO>2.0.CO;2
[84] Zhu, P., Zuidema, P., 2009. On the use of PDF schemes to parameterize sub‐grid clouds. Geophysical Research Letters. 36(5). DOI: https://doi.org/10.1029/2008GL036817
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2024 Sourabh Bal, Ingo Kirchner
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.