Atmospheric Circulation in the Furnas Reservoir Region, MG: Sensitivity Experiments with RegCM5 in Convection-Permitting Mode
DOI:
https://doi.org/10.30564/jasr.v7i3.6633Abstract
In the 1950s, the Furnas reservoir was created, an artificial lake surrounded by hills, for the operation of the Furnas Hydroelectric Power Plant in southeastern Brazil. Along the shores of the Furnas reservoir, there are no meteorological stations, and only three are found at a distance greater than 10 km from the reservoir, which makes it challenging to assess the lake's influence on the local climate. To address this issue, the Regional Climate Model version 5 (RegCM5) was run in convection-permitting (CP) mode for two months, with a horizontal resolution of 1 km, to investigate the near-surface atmospheric circulation patterns around the reservoir. Three numerical experiments were conducted using RegCM5-CP nested in ERA5 reanalysis: a control simulation (CTRL), an experiment where the topography was assumed to be flat throughout the domain (expTOPO), and an experiment where the water body was replaced by vegetation (expVEG). The first month of simulation in each experiment was excluded from the analysis as it was considered a spin-up period. RegCM5-CP has good performance in simulating the diurnal cycle of the 2-m air temperature and reasonable performance for the 10-m wind intensity compared to observed data from three meteorological stations in the domain of simulation (but distant from the reservoir shore). Despite the geographic complexity of the Furnas reservoir, the experiments revealed coupling between lake and valley breezes during the daytime and land and mountain breezes during nighttime in different segments of the reservoir, such as in Guapé (near the dam). However, mountain-valley breezes are more dominant.
Keywords:
Sensitivity experiments; Breezes; Furnas reservoir; RegCM5-CPReferences
[1] Usina Hidrelétrica de Furnas, 2024. Eletrobrás (Furnas) [Internet] [cited 2024 May 14]. Available from: https://acervofurnas.com.br/usinas/@id/31789#:~:text=Outros%20dados%20t%C3%A9cnicos%20da%20usina,capacidade%20instalada%20de%201.216%20MW.&text=ANEEL. (in Portuguese)
[2] Agência Nacional de Energia Elétrica (ANEEL), 2024. Sistema de Informações de Geração da ANEEL SIGA [Internet] [cited 2024 Feb 2]. Available from: https://app.powerbi.com/view?r=eyJrIjoiNjc4OGYyYjQtYWM2ZC00YjllLWJlYmEtYzdkNTQ1MTc1NjM2IiwidCI6IjQwZDZmOWI4LWVjYTctNDZhMi05MmQ0LWVhNGU5YzAxNzBlMSIsImMiOjR9.
[3] Pozzer, C.E.; & Ferrão, A.M.A., 2018. O Plano de Desenvolvimento do Lago de Furnas de 1975: o desafio da integração regional. Interações, 19, 871–887. (in Portuguese) DOI: https://doi.org/10.20435/inter.v19i4.1688
[4] Grimm A., 1988. Verificação de Variações Climáticas na área do Lago de Itaipu. Proceedings of the Brazilian Congress of Meteorology, Federal University of Paraná, Rio de Janeiro. (in Portuguese)
[5] Simpson, J.E., 1994. Sea breeze and local wind. Cambridge University Press: Cambridge. pp. 248.
[6] Nascimento, M.L.L., 2015. A camada limite planetária na região da barragem do Alqueva [Master's thesis]. Lisboa: University of Lisboa. p. 44. (in Portuguese)
[7] Orlanski, I., 1975. A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society. 56(5), 527–530.
[8] Guidon, M.A.A.O., 1991. Estudo das variações climáticas na área do lago de Tucuruí. [Master's thesis]. São Paulo (SP): University of São Paulo. p. 539. (in Portuguese)
[9] Correia, M.F., & Dias, M.A.F.S., 2003. A variação do nível do reservatório de sobradinho e seu impacto sobre o clima da região. Revista Brasileira de Recursos Hídricos. 8(1), 157–168. (in Portuguese) DOI: http://dx.doi.org/10.21168/rbrh.v8n1.p157-168
[10] Stivari, S.M., Oliveira, A.P., Karam, H.A., et al., 2003. Patterns of local circulation in the Itaipu Lake area: Numerical simulations of lake breeze. Journal of Applied Meteorology and Climatology. 42(1), 37–50. DOI: https://doi.org/10.1175/1520-0450(2003)042%3C0037:POLCIT%3E2.0.CO;2
[11] Saldanha, R.L, 2003. Estudo das Circulações Atmosféricas Locais sobre o Estuário da Lagoa dos Patos [Master's thesis]. Rio Grande (RS): Universidade Federal do Rio Grande do Sul. p. 81. (in Portuguese)
[12] Gunkel, G., Lange, U., Walde, D., et al., 2003. The environmental and operational impacts of Curuá-Una, a reservoir in the Amazon region of Pará, Brazil. Lake & Reservoirs: Research and Management. 8(3–4), 201–216. DOI: https://doi.org/10.1111/j.1440-1770.2003.00227.x
[13] Freitas, E.D., 2003. Circulações locais em São Paulo e sua influência sobre a dispersão de poluentes [PhD thesis]. São Paulo (SP): University of São Paulo. p. 157. (in Portuguese) DOI: https://doi.org/10.11606/T.14.2003.tde-16032006-160700
[14] Freitas, E. D., Silva Dias, P. L. D., 2004. Os efeitos da brisa lacustre sobre as condições atmosféricas da região metropolitana de São Paulo. Annals of the 13th Brazilian Congress of Meteorology, Fortaleza, Ceará, Brazil. (in Portuguese)
[15] Czarnobai, A., Prudêncio, R.S., Rodrigues, M.L.G., 2006. A circulação atmosférica local na região da Usina Hidrelétrica Itá. Proceedings of the 14th Brazilian Congress of Meteorology, Florianópolis, Santa Catarina, Brazil. (in Portuguese)
[16] Leite, M.S.G., 2013. Circulações locais no Rio Grande do Sul: Brisas marítima/terrestre e sua interação com as brisas lacustres/terrestres [Master's thesis]. Rio Grande do Sul: Federal University of Rio Grande. p. 107. (in Portuguese)
[17] Ekhtiari, N., Grossman-Clarke, S., Koch, H., et al., 2017. Effects of the lake sobradinho reservoir (northeastern Brazil) on the regional climate. Climate. 5(3), 50. DOI: https://doi.org/10.3390/cli5030050
[18] Reis, A.L., Campos, B., Carvalho, V.S.B., et al., 2018. Análise da Variabilidade dos Ventos em Extensos Sistemas Aquáticos Tropicais: Comparação dos Resultados Obtidos com os Modelos WRF e BRAMS. Yearbook of the Institute of Geosciences, 41, pp. 663–676. (in Portuguese) DOI: https://doi.org/10.11137/2018_2_663_676
[19] Pellegrini, C.C., Araújo, C.C.S., Reis, A., et al., 2019. Análise do desempenho do modelo WRF num episódio de vento intenso e persistente num grande reservatório tropical. Brazilian Journal of Meteorology. 34, 121–138. (in Portuguese) DOI: https://doi.org/10.1590/0102-77863340021
[20] Reis, A.L., Pacheco, F.S., Pimenta, F.M., et al., 2023. Effects of atmospheric low-level jets on the mixing process of a large tropical reservoir. Annals of the Brazilian Academy of Sciences. 95(3), e20211594. DOI: https://doi.org/10.1590/0001-3765202320211594
[21] Giorgi, F., Coppola, E., Giuliani, G., et al., 2023. The fifth generation regional climate modeling system, RegCM5: Description and illustrative examples at parameterized convection and convection-permitting resolutions. Journal of Geophysical Research: Atmospheres. 128(6), e2022JD038199. DOI: https://doi.org/10.1029/2022JD038199
[22] da Rocha, R.P., Silva, L., Bettolli, M.L., et al. (editors), 2023. Assessing long-term climatology of convection permitting simulation of precipitation and associated local circulation over southeastern South America. EGU General Assembly; 2023 Apr 23–28; Vienna, Austria. DOI: https://doi.org/10.5194/egusphere-egu23-16270
[23] Alago-PDRH Furnas, 2013. Plano Diretor de Recursos Hídricos da Bacia Hidrográfica do Entorno do Lago de Furnas: Relatório Parcial 1: Diagnóstico da Bacia Hidrográfica. Alfenas: Alago, p. 305. (in Portuguese)
[24] Reboita, M.S., Rodrigues, M., Silva, L.F., et al., 2015. Aspectos climáticos do estado de Minas Gerais. Brazilian Journal of Climatology. 17, 206–226. (in Portuguese) DOI: https://doi.org/10.5380/abclima.v17i0.41493
[25] Carvalho, C.C., Gomide, L.R., Scolforo, J.R.S., et al., 2022. Mineração de dados aplicada a métodos de seleção de variáveis para a modelagem de estoque de carbono acima do solo. Brazilian Agricultural Research, 57, 03015. (in Portuguese) DOI: https://doi.org/10.1590/S1678-3921.pab2022.v57.03015
[26] Hersbach, H., Bell, B., Berrisford, P., et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 146(730), 1999–2049. DOI: https://doi.org/10.1002/qj.3803
[27] Dominguez, F., Rasmussen, R., Liu, C., et al., 2024. Advancing South American water and climate science through multidecadal convection-permitting modeling. Bulletin of American Meteorology Society. 105(1), E32–E44. DOI: https://doi.org/10.1175/BAMS-D-22-0226.1
[28] Torma, C.Z., Giorgi, F. (editors), 2024. Convection permitting regional climate modelling with RegCM5 over the Carpathian Region. EGU General Assembly; 2024 Apr 14–19; Vienna, Austria. DOI: https://doi.org/10.5194/egusphere-egu24-324
[29] Bgherotto, R., Tompkins, A.M., Giuliani, G., et al., 2016. Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: Precipitation, cloud microphysics, and cloud radiative effects. Geoscientific Model Development. 9, 2533–2547. DOI: https://doi.org/10.5194/gmd-9-2533-2016
[30] Oleson, K.W., Lawrence, D.M., Bonan, G.B., et al., 2013. Technical description of version 4.5 of the Community Land Model (CLM) (Tech. Rep. NCAR/TN-503+STR). National Center for Atmospheric Research: Boulder, Colorado.
[31] Holtslag, A., de Bruijn, E., Pan, H.L., 1990. A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review. 118(8), 1561–1575. DOI: https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2
[32] Zeng, X., Zhao, M., Dickinson, R.E., 1998. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. Journal of Climate. 11(10), 2628–2644. DOI: https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2
[33] Kiehl, J., Hack, J., Bonan, G., et al., 1996. Description of the NCAR Community Climate Model (CCM3). University Corporation for Atmospheric Research: Boulder, CO. DOI: http://dx.doi.org/10.5065/D6FF3Q99
[34] Giorgi, F., Mearns, L.O., 1999. Introduction to special section: Regional climate modeling revisited. Journal of Geophysical Research. 104(D6), 6335–6352. DOI: https://doi.org/10.1029/98jd02072
[35] Reboita, M.S., Rocha, R.P. (editors), 2023. Assessment of a RegCM5 convection permitting simulation in a complex region of southeast Brazil. 11th Workshop on the Theory and Use of Regional Climate Models; 2023 Oct 2–6; Trieste, Italy.
[36] Pielke Sr, R.A., 2013. Mesoscale meteorological modeling. Academic Press: Cambridge.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2024 Fabiana da Rocha Bartolomei, Michelle Simões Reboita, Natan Chrysostomo de Oliveira Nogueira, Denis William Garcia, Rafael Gonçalves Xavier, Raul Nicolas Maciel Chaves, Luiz Gustavo Oliveira, Rosmeri Porfírio da Rocha
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.