Trends and Temporal of Rainfall Erosion due Variability Rainfall in Nakambè Watershed, Burkina Faso

Authors

  • Joseph Yaméogo

    Department of Human Sciences and Society, Ziniaré University Center/Joseph KI-ZERBO University, Ouagadougou 7021, Burkina Faso

  • Songanaba Rouamba

    Department of Geography, Norbert ZONGO University, Koudougou 376, Burkina Faso

  • Suzanne Koala

    Department of Geography, Norbert ZONGO University, Koudougou 376, Burkina Faso

  • Richard Zongo

    Department of Geography, Norbert ZONGO University, Koudougou 376, Burkina Faso

DOI:

https://doi.org/10.30564/jasr.v8i2.10301
Received: 25 February 2025 | Revised: 1 April 2025 | Accepted: 8 April 2025 | Published Online: 18 April 2025

Abstract

Understanding how rain erosion evolves and what determines it can contribute to the better management of soil resources. This study analyses the evolution of rain erosion in the Nakambè catchment in Burkina Faso between 1992 and 2022. Monthly rainfall data for this period were extracted from NASA POWER. Erodibility indices were then employed to evaluate the extent of erosion. Precipitation variability was assessed using the coefficients of variation and the standardized precipitation index. The study shows that precipitation varied within the catchment area during this period. This variation is seasonal, as it fluctuates before, during and after the rainy season, with a coefficient of variation ranging from 18 during the rainy season to 556.18 after the rainy season. The catchment also exhibits multi-year fluctuations, long-term fluctuations or perennial variations (1992–2004 and 2004–2022). The study also shows that rain erosion varies annually and seasonally. The Fournier, Arnoldus and rainfall concentration indices indicate variability in erosivity, with a significant increase in August. It also appears that rainfall trends and variability have an impact on erosion in the catchment. For example, erosion increases with precipitation concentration and the standardized rainfall anomaly over the period 1992-2022. The cumulative effect of precipitation concentration—reflected in increased rainfall during July and August—along with the wet phase of the 1992–2022 period, are the main determining factors for rain erosion in the catchment. It is therefore important to limit the construction of dams in the basin, as they may contribute to the continued degradation of the catchment.

Keywords:

Nakambé Watershed; Rainfall Variability; Erosion Index Trends; Burkina Faso

References

[1] Zhang, Q., Berntell, E., Li, Q., et al., 2021. Understanding the variability of the rainfall dipole in West Africa using the EC-Earth last millennium simulation. Climate Dynamics. 57(1), 93–107. DOI: https://doi.org/10.1007/s00382-021-05696-x

[2] Nicholson, S.E., 2013. The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. International Scholarly Research Notices. 2013(1), 453521. DOI: https://doi.org/10.1155/2013/453521

[3] Ibrahim, B., Nazoumou, Y., Fowe, T., et al., 2021. Identification of a Representative Stationary Period for Rainfall Variability Description in the Sudano-Sahelian Zone of West Africa during the 1901–2018 Period. Atmosphere. 12(6), 716. DOI: https://doi.org/10.3390/atmos12060716

[4] Agbo, E.P., Offorson, G.C., Yusuf, A.S., et al., 2025. Innovative trend analysis of precipitation changes over Nigeria: A case study of locations across the Niger and Benue Rivers. Journal of the Nigerian Society of Physical Sciences. 7(1), 1868. DOI: https://doi.org/10.46481/jnsps.2025.1868

[5] Larbi, I., Nyamekye, C., Hountondji, F.C., et al., 2020. Climate change impact on climate extremes and adaptation strategies in the Vea catchment, Ghana. In: Leal Filho, W., Oguge, N., Ayal, D., Adeleke, L., da Silva, I. (eds.). African Handbook of Climate Change Adaptation. Springer Nature: Cham, Switzerland. pp. 1–17.

[6] Nyatuame, M., Agodzo, S.K., Amekudzi, L.K., 2022. Analysis of rainfall and temperature trend and variability of the Tordzie Watershed. Ghana Journal of Science, Technology and Development. 8(1), 1–17. DOI: https://doi.org/10.47881/271.967x

[7] Noba, W.G., Damiba, L., Doumounia A., et al., 2024. Climate projection and future rainfall trends analysis in the Nouhao sub-basin in Burkina Faso. Global NEST Journal. 26(3), 1–10. DOI: https://doi.org/10.30955/gnj.005724

[8] Yaméogo, J., Sawadogo, A., 2024. Consequences of precipitation variability and socio-economic activity on surface water in the Vranso water basin (Burkina Faso). Glasnik Srpskog Geografskog Drustva. 104(1), 255–266. DOI: https://doi.org/10.2298/gsgd2401255y

[9] Yao, B.A.F., Soro, G.E., Larbi, I., et al., 2024. Effects of climate variability and/or land use dynamics on the hydrological balance of the Cavally River catchment at Toulepleu, West Africa. Journal of Water and Climate Change. 15(5), 2092–2109. DOI: https://doi.org/10.2166/wcc.2024.512

[10] Coulibaly, N., Coulibaly, T.J.H., Mpakama, Z., et al., 2018. The impact of climate change on water resource availability in a trans-boundary basin in West Africa: The case of Sassandra. Hydrology. 5(1), 12. DOI: https://doi.org/10.3390/hydrology5010012

[11] Ebodé, V.B., Mahé, G., Amoussou, E., 2021. Impact de la variabilité climatique et de l'anthropisation sur les écoulements de la Bénoué (nord Cameroun [Impact of climatic variability and human activity on runoff from the Benoué (northern Cameroon)]. Proceedings of the International Association of Hydrological Sciences. 384, 261–267. DOI: https://doi.org/10.5194/piahs-384-261-2021 (in French)

[12] Markantonis, V., Farinosi, F., Dondeynaz, C., et al., 2018. Assessing floods and droughts in the Mékrou River basin (West Africa): a combined household survey and climatic trends analysis approach. Natural Hazards and Earth System Sciences. 18, 1279–1296. DOI: https://doi.org/10.5194/nhess-18-1279-2018

[13] Yéo, W.E., Goula, B.T.A., Diekkrüger, B., et al., 2016. Vulnerability and adaptation to climate change in the Comoe River Basin (West Africa). SpringerPlus. 5(1), 1–15. DOI: https://doi.org/10.1186/s40064-016-2491-z

[14] Angulo-Martínez, M., Beguería, S., 2009. Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). Journal of hydrology. 379(1–2), 111–121. DOI: https://doi.org/10.1016/j.jhydrol.2009.09.051

[15] Diouf, R.N., Faye, C., Dieye, S., et al., 2021. in Distribution spatiale et tendances temporelles de l’érosivité des précipitations dans des bassins versants du sud du Sénégal (Gambie et Casamance)[Spatial distribution and temporal trends in rainfall erosivity in catchment areas of southern Senegal (Gambia and Casamance)]. Liens, Revue Internationale des Sciences et Technologies de l'Éducation. 1(1), 361–379. (in French)

[16] Gbohoui, Y.P., Paturel, J.E., Tazen, F., et al., 2021. Impacts of climate and environmental changes on water resources: A multi-scale study based on Nakanbé nested watersheds in West African Sahel. Journal of Hydrology: Regional Studies. 35, 100828. DOI: https://doi.org/10.1016/j.ejrh.2021.100828

[17] Zouré, C.O., Kiema, A., Yonaba, R., et al., 2023. Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa). Land. 12(11), 2017. DOI: https://doi.org/10.3390/land12112017

[18] Koala, S., Nakoulma, G., Dipama, J.-M., 2022. in Évolution Des Précipitations Et De La Température À l’Horizon 2050 Avec Les Modèles Climatiques CMIP5 Dans Le Bassin Versant Du Nakambé (Burkina Faso)[Changes in Precipitation and Temperature to 2050 Using CMIP5 Climate Models in the Nakambé Watershed (Burkina Faso)]. International Journal of Progressive Sciences and Technologies (IJPSAT). 37(2), 110–124. (in French)

[19] Tan, M.L., Armanuos, A.M., Ahmadianfar, I., et al., 2023. Evaluation of NASA POWER and ERA5-Land for estimating tropical precipitation and temperature extremes. Journal of Hydrology. 624, 129940. DOI: https://doi.org/10.1016/j.jhydrol.2023.129940

[20] Al-Kilani, M.R., Rahbeh, M., Al-Bakri, J., et al., 2021. Evaluation of remotely sensed precipitation estimates from the NASA POWER project for drought detection over Jordan. Earth Systems and Environment. 5(3), 561–573. DOI: https://doi.org/10.1007/s41748-021-00245-2

[21] Yaméogo, J., 2024. Changes in the seasonal cycles of extreme temperatures in the Sudano-Sahelian domain in West Africa: a case study from Burkina Faso. Meteorology Hydrology and Water Management. 12(2). DOI: https://doi.org/10.26491/mhwm/194451

[22] Okafor, G.C., Larbi, I., Chukwuma, E.C., et al., 2021. Local climate change signals and changes in climate extremes in a typical Sahel catchment: The case of Dano catchment, Burkina Faso. Environmental Challenges. 5, 100285, DOI: https://doi.org/10.1016/j.envc.2021.100285

[23] Kwawuvi, D., Mama, D., Agodzo, S.K., et al., 2022. An investigation into the future changes in rainfall onset, cessation and length of rainy season in the Oti River Basin, West Africa. Modeling Earth Systems and Environment. 8, 5077–5095. DOI: https://doi.org/10.1007/s40808-022-01410-w

[24] Ndiaye, P.M., Bodian, A., Diop, L., et al., 2021. Future trend and sensitivity analysis of evapotranspiration in the Senegal River Basin. Journal of Hydrology: Regional Studies. 35, 100820. DOI: https://doi.org/10.1016/j.ejrh.2021.100820

[25] Alemayehu, A., Maru, M., Bewket, W., et al., 2020. Spatiotemporal variability and trends in rainfall and temperature in Alwero watershed, western Ethiopia. Environmental Systems Research. 9(1), 1–15. DOI: https://doi.org/10.1186/s40068-020-00184-3

[26] Harka, A.E., Jilo, N.B., Behulu, F., 2021. Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of innovative trend analysis method. Journal of Hydrology: Regional Studies. 37, 100915. DOI: https://doi.org/10.1016/j.ejrh.2021.100915

[27] De, A., Shreya, S., Sarkar, N., et al., 2023. Time series trend analysis of rainfall and temperature over Kolkata and surrounding region. Atmósfera. 37, 71–84. DOI: https://doi.org/10.20937/atm.53059

[28] Talib, S.A.A., Idris, W.M.R., Neng, L.J., et al., 2024. Irregularity and time series trend analysis of rainfall in Johor, Malaysia. Heliyon. 10(9), 1–18. DOI: https://doi.org/10.1016/j.heliyon.2024.e30324

[29] Taye, M., Mengistu, D., Sahlu, D., 2024. Characterizing the variability and trend of rainfall in central highlands of Abbay Basin, Ethiopia: using IMERG-06 dataset. European Journal of Remote Sensing. 57(1), 2372856. DOI: https://doi.org/10.1080/22797254.2024.2372856

[30] Shitu, K., Hymiro, A., Tesfaw, M., et al., 2024. Temporal rainfall variability and drought characterization in Cheleka Watershed, Awash River Basin, Ethiopia. Journal of Hydrology: Regional Studies. 51, 101663. DOI: https://doi.org/10.1016/j.ejrh.2024.101663

[31] Asfaw, A., Simane, B., Hassen, A., et al., 2018. Variability and time series trend analysis of rainfall and temperature in north central Ethiopia: a case study in Woleka sub-basin. Weather Clim Extremes. 19, 29–41. DOI: https://doi.org/10.1016/j.wace.2017.12.002

[32] Akrami, S.A., El-Shafie, A., Naseri, M., et al., 2014. Rainfall data analyzing using moving average (MA) model and wavelet multi-resolution intelligent model for noise evaluation to improve the forecasting accuracy. Neural Computing and Applications. 25, 1853–1861. DOI: https://doi.org/10.1007/s00521-014-1675-0

[33] Mello, C.D., Viola, M.R., Beskow, S., et al., 2013. Multivariate models for annual rainfall erosivity in Brazil. Geoderma. 202, 88–102. DOI: https://doi.org/10.1016/j.geoderma.2013.03.009

[34] Hernando, D., Romana, M.G., 2015. Estimating the rainfall erosivity factor from monthly precipitation data in the Madrid Region (Spain). Journal of Hydrology and Hydromechanics. 63(1), 55–62. DOI: https://doi.org/10.1515/johh-2015-0003

[35] Michiels, P., Gabriels, D., Hartmann, R., 1992. Using the seasonal and temporal precipitation concentration index for characterizing the monthly rainfall distribution in Spain. Catena. 19(1), 43–58. DOI: https://doi.org/10.1016/0341-8162(92)90016-5

[36] Kingbo, A., Teka, O., Aoudji, A.K.N., et al., 2022. Climate Change in Southeast Benin and Its Influences on the Spatio-Temporal Dynamic of Forests, Benin, West Africa. Forests. 13(5), 698. DOI: https://doi.org/10.3390/f13050698

[37] Gibbs, J.P., Martin, W.T., 1962. Urbanization, technology, and the division of labor: International patterns. American sociological review. 27(5), 667–677. DOI: https://doi.org/10.2307/2089624

[38] Oliver, J.E., 1980. Monthly precipitation distribution: a comparative index. The Professional Geographer. 32(3), 300–309. DOI: https://doi.org/10.1111/j.0033-0124.1980.00300.x

[39] Dumitraşcu, M., Dragotă, C.S., Grigorescu, I., et al., 2017. Key pluvial parameters in assessing rainfall erosivity in the south-west development region, Romania. Journal of Earth System Science. 126, 1–17. DOI: https://doi.org/10.1007/s12040-017-0834-y

[40] Maamar-Kouadri, K., Kouri, L., Chebouti, Y., 2016.in Utilisation de l’Indice d’Arnoldus pour cartographier les risques d’érosivité des pluies dans le Tell oranais (Algérie)[Use of the Arnoldus Index to map the risk of rainfall erosion in the Tell of Oran (Algeria)]. Geo-Eco-Trop. 40(4), 287–296. (in French)

[41] Turner, S.L., Forbes, A.B., Karahalios, A., et al., 2021. Evaluation of statistical methods used in the analysis of interrupted time series studies: a simulation study. BMC medical research methodology. 21, 1–18. DOI: https://doi.org/10.1186/s12874-021-01364-0

[42] Kumar, N.K., 2023. Autocorrelation and heteroscedasticity in regression analysis. Journal of Business and Social Sciences. 5(1), 9–20. DOI: https://doi.org/10.3126/jbss.v5i1.72442

[43] Yue, S., Pilon, P., Phinney, B., et al., 2002. The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Processes. 16, 1807–1829. DOI: https://doi.org/10.1002/hyp.1095

[44] Ranjan, S., Singh, L., Bahuguna, A., et al., 2023. Analysis of Trend Using Nonparametric Test for Rainfall and Rainy-Days in Jodhpur Zone of Rajasthan. Indian Journal of Ecology. 50(4), 1063–1068. DOI: https://doi.org/10.55362/IJE/2023/4014

[45] Yaméogo, J., 2025. Annual rainfall trends in the Burkina Faso Sahel: a comparative analysis between Mann–Kendall and innovative trend method (ITM). Discover Applied Sciences. 7, 221. DOI: https://doi.org/10.1007/s42452-025-06675-1

[46] Hamed, K.H., Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology. 204(1–4), 182–196. DOI: https://doi.org/10.1016/S0022-1694(97)00125-X

[47] Koutsoyiannis, D., 2003. Climate change, the Hurst phenomenon, and hydrologicalal statistics. Hydrologicalal Sciences Journal-Journal Des Sciences Hydrologiques. 48(1), 3–24. DOI: https://doi.org/10.1623/hysj.48.1.3.43481

[48] Yue, S., Wang, C.Y., 2004. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrologicalal series. Water Resources Management. 18(3), 201–218. DOI: https://doi.org/10.1023/B:WARM.0000043140.61082.60

[49] Cammalleri, C., Sarwar, A.N., Avino, A., et al., 2024. Testing trends in gridded rainfall datasets at relevant hydrological scales: A comparative study with regional ground observations in Southern Italy. Journal of Hydrology: Regional Studies. 55(12), 101950. DOI: https://doi.org/10.1016/j.ejrh.2024.101950

[50] Bayazit, M., Önöz, B.J.H.S.J., 2007. To prewhiten or not to prewhiten in trend analysis? Hydrological Sciences Journal. 52(4), 611–624. DOI: https://doi.org/10.1623/hysj.52.4.611

[51] Kumar, M., Denis, D.M., Suryavanshi, S., 2016. Long-term climatic trend analysis of Giridih district, Jharkhand (India) using statistical approach. Modeling Earth Systems and Environment. 2, 116. DOI: https://doi.org/10.1007/s40808-016-0162-2

[52] Fathian, F., Dehghan, Z., Bazrkar, M.H., et al., 2016. Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrological Sciences Journal. 61(5), 892–904. DOI: https://doi.org/10.1080/02626667.2014.932911

[53] Dancey, C., Reidy, J., 2006. in Estatística sem matemática para psicologia: Usando SPSS para-Windows.[Statistics without maths for psychology: Using SPSS for Windows]. Artmed: Porto Alegre, Brazil, 608. (in French)

[54] Koala, S., Seydou, W., Dipama, J-M., 2023b. in Tendances pluviométriques récentes: vers une reprise de la pluviométrie au sahel. Cas du bassin versant du Nakambé (Burkina Faso)[Recent rainfall trends: towards an upturn in rainfall in the Sahel. The Nakambé catchment (Burkina Faso)]. pp.12-27. (in French)

[55] Koala, S., Dipama, J.M., Vissin, E.W., 2023a. Evolution of Extreme Rainfall and Temperature Indices in the Nakambé Watershed at the Bagré Outflow (Burkina Faso). International Journal of Advanced Engineering and Management Research. 8(2), 154–169. DOI: https://doi.org/10.51505/ijaemr.2023.8214

[56] Karambiri, B.L.C.N., Dipama, J.M., Sanou, K., 2019. in Variabilité climatique et gestion efficiente de l’eau dans le bassin versant du Sourou au Burkina Faso[Climate variability and efficient water management in the Sourou catchment in Burkina Faso]. Revue de Géographie de l’Université de Ouagadougou. 8(1), 65–83. (in French)

[57] Kambire, G., Sirima, A.B., Rouamba, S., et al, 2023. in Variabilité hydro-climatique, aménagements hydrauliques et incidence sur le régime du fleuve Mouhoun a Dapola et Boromo[Hydro-climatic variability, hydraulic developments and impact on the regime of the Mouhoun River at Dapola and Boromo]. Collection recherches & regards d’Afrique. 3(3), 33–59. (in French)

[58] Yameogo, W.V.M., Kabore, O., Sanon, Z., et al., 2023.in Dynamique spatio-temporelle des surfaces en eau du bassin du Nakanbé-Mané au Burkina Faso[Spatial and temporal dynamics of water surfaces in the Nakanbé-Mané basin in Burkina Faso]. International Journal of Biological and Chemical Sciences. 17(1), 233–246. DOI: https://doi.org/10.4314/ijbcs.v17i1.17 (in French)

[59] Guelbeogo, S., Ouedraogo, L., Ilboudo, S., 2023. in Prévision des crues dans le bassin versant du Kou, Burkina Faso[Flood forecasting in the Kou catchment area, Burkina Faso]. International Journal of Biological and Chemical Sciences. 17(3), 1131–1146. DOI: https://dx.doi.org/10.4314/ijbcs.v17i3.29 (in French)

[60] Karambiri, B.L.C.N., 2023. in Les inondations d’octobre et de novembre 2022 dans la vallée du Sourou au Burkina Faso[ The floods of October and November 2022 in the Sourou valley in Burkina Faso]. Collection Pluraxes monde. 44–64. (in French)

[61] Lawin, A.E., Hounguè, N.R., Biaou, C.A., et al., 2019. Statistical analysis of recent and future rainfall and temperature variability in the Mono River watershed (Benin, Togo). Climate. 7(1), 8. DOI: https://doi.org/10.3390/cli7010008

[62] Andoh, H.F., Antwi, B.O., Wakatsuiki, T., et al., 2012. Estimation of soil erodibility and rainfall erosivity patterns in the agroecological zones of Ghana. Journal of Soil Science and Environmental Management. 3(11), 275–279.

[63] Amanambu, A.C., Li, L., Egbinola, C.N., et al., 2019. Spatio-temporal variation in rainfall-runoff erosivity due to climate change in the Lower Niger Basin, West Africa. Catena. 172, 324–334. DOI: https://doi.org/10.1016/j.catena.2018.09.003

[64] Adeyeri, O.E., Folorunsho, A.H., Adeliyi, T.E., et al., 2024. Climate change is intensifying rainfall erosivity and soil erosion in West Africa. Science of The Total Environment. 955, 177174. DOI: https://doi.org/10.1016/j.scitotenv.2024.177174

[65] Watene, G., Yu, L., Nie, Y., et al., 2021. Spatial-temporal variability of future rainfall erosivity and its impact on soil loss risk in Kenya. Applied Sciences. 11(21), 9903. DOI: https://doi.org/10.3390/app11219903

[66] Almagro, A., Oliveira, P.T.S., Nearing, M.A., et al., 2017. Projected climate change impacts in rainfall erosivity over Brazil. Scientific reports. 7(1), 8130. DOI: https://doi.org/10.1038/s41598-017-08298-y

[67] Nasidi, N.M., Wayayok, A., Abdullah, A.F., et al., 2021. Spatio-temporal dynamics of rainfall erosivity due to climate change in Cameron Highlands, Malaysia. Modeling Earth Systems and Environment. 7(3), 1847–1861. DOI: https://doi.org/10.1007/s40808-020-00917-4

[68] Panagos, P., Hengl, T., Wheeler, I., et al., 2023. Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution. Data in brief. 50, 109482. DOI: https://doi.org/10.1016/j.dib.2023.109482

[69] Emberson, R.A., 2023. Dynamic rainfall erosivity estimates derived from IMERG data. Hydrology and Earth System Sciences. 27(19), 3547–3563. DOI: https://doi.org/10.5194/hess-27-3547-2023

[70] Abd Elbasit, M.A., Huang, J., Ojha, C.S.P., et al., 2013. Spatiotemporal changes of rainfall erosivity in Loess Plateau, China. International Scholarly Research Notices. 2013(1), 256352. DOI: https://doi.org/10.1155/2013/256352

[71] Bouderbala, D., Souidi, Z., Hamimed, A., et al., 2019. Estimation of rainfall erosivity by mapping at the watershed of macta (Algeria). Revista Brasileira de Cartografia. 71(1), 274–294.

[72] Singh, J., Singh, O., 2020. Assessing rainfall erosivity and erosivity density over a western Himalayan catchment, India. Journal of Earth System Science. 129(1), 97. DOI: https://doi.org/10.1007/s12040-020-1362-8

[73] Yeşilırmak, E., Atatanır, L., 2021. Variations in Erosion Risk in Western Anatolia (Turkey): Modified Fournier Approach. ÇOMÜ Ziraat Fakültesi Dergisi. 9(1), 179–188. DOI: https://doi.org/10.33202/comuagri.866697

[74] Nunes, A.N., Lourenço, L., Vieira, A., et al., 2016. Precipitation and erosivity in southern Portugal: seasonal variability and trends (1950–2008). Land Degradation & Development. 27(2), 211–222. DOI: https://doi.org/10.1002/ldr.2265

[75] Ballabio, C., Borrelli, P., Spinoni, J., et al., 2017. Mapping monthly rainfall erosivity in Europe. Science of the Total Environment. 579, 1298–1315. DOI: https://doi.org/10.1016/j.scitotenv.2016.11.123

Downloads

How to Cite

Yaméogo, J., Rouamba, S., Koala, S., & Zongo, R. (2025). Trends and Temporal of Rainfall Erosion due Variability Rainfall in Nakambè Watershed, Burkina Faso. Journal of Atmospheric Science Research, 8(2), 65–85. https://doi.org/10.30564/jasr.v8i2.10301

Issue

Article Type

Article