-
3034
-
2414
-
2409
-
1872
-
1812
Analysis of the Climatic Impacts of SO2 Injection into the Stratosphere on Precipitation Indices in the Sahel
DOI:
https://doi.org/10.30564/jasr.v8i1.8603Abstract
Stratospheric Aerosol Injection (SAI) emerges as a geoengineering strategy to mitigate global warming by reflecting sunlight back into space. However, this approach raises significant concerns, particularly regarding its impact on rainfall characteristics in the Sahel. This study investigates the effects of injecting sulfur dioxide (SO2) into the stratosphere using the IPSL-CM5A-LR climate model, under two forcing scenarios: RCP4.5 (Representative Concentration Pathway of 4.5 W m–²) and a combination of RCP4.5 with geoengineering forcing (G3). The analysis focuses on future climate conditions in the Sahel, based on 30-year averages over two distinct periods: 2020–2050 and 2050–2080. The results highlight notable differences between the “with injection” and “without injection” scenarios. The number of consecutive wet days (CWD) increases with SO2 injection, indicating prolonged rainfall periods. Annual total precipitation on wet days (PRCPTOT) exhibits a slight upward trend with SO2 injection, potentially mitigating drought effects. Conversely, maximum daily precipitation (Rx1day) and five-day precipitation (Rx5day) are slightly higher in the absence of injection, suggesting a reduction in extreme precipitation intensity when SO2 is introduced. The Simple Daily Intensity Index (SDII) shows moderate variations between scenarios, with a slight decrease observed under SO2 injection. These findings indicate that SO2 injection could help stabilize precipitation regimes and reduce climate extremes in the Sahel. However, further research is crucial to gaining a deeper understanding of the long-term implications of this method and optimizing its application.
Keywords:
Stratospheric Aerosol Injection; Geoengineering; Sulfur Dioxide; Climate Model; Sahel; Precipitation IndicesReferences
[1] Alley, R.B., Clark, P.U., Huybers, P., et al., 2003. Abrupt climate change. Science. 299(5615), 2005–2010. DOI: https://doi.org/10.1126/science.1081056
[2] Robock, A., Oman, L., Stenchikov, G.L., 2008. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. Journal of Geophysical Research: Atmospheres. 113(D16), D16101. DOI: https://doi.org/10.1029/2008JD010050
[3] Huynh, H.N., McNeill, V.F., 2024. The potential environmental and climate impacts of stratospheric aerosol injection: a review. Environmental Science: Atmospheres. 4(2),114–143. Doi: https://doi.org/10.1039/D3EA00134B
[4] Tilmes, S., Müller, R., Salawitch, R., 2008. The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science. 320(5880), 1201–1204. DOI: https://doi.org/10.1126/science.1153966
[5] Rasch, P.J., Tilmes, S., Turco, R.P., et al., 2008. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 366(1882), 4007–4037. DOI: https://doi.org/10.1098/rsta.2008.0131
[6] Jones, A., Haywood, J., Boucher, O., 2009. Climate impacts of geoengineering marine stratocumulus clouds. Journal of Geophysical Research: Atmospheres. 114(D10), D10106. DOI: https://doi.org/10.1029/2008JD011450
[7] Xia, L., Robock, A., Tilmes, S., et al., 2016. Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmospheric Chemistry and Physics. 16(3), 1479–1489. DOI: https://doi.org/10.5194/acp-16-1479-2016
[8] Kravitz, B., Robock, A., Jones, A., et al., 2015. The Geoengineering Model Intercomparison Project (GeoMIP): A review. Wiley Interdisciplinary Reviews: Climate Change. 6(6), 907–924. DOI: https://doi/epdf/10.1002/asl.316
[9] Twumasi-Ankrah, M. J., Zhan, J., Asamoah, E.F., 2024. Mapping ecoregional vulnerability to climate change for Africa. Science of the Total Environment, 953, 176219. DOI: https://doi.org/10.1016/j.scitotenv.2024.176219
[10] Jones, A., Haywood, J., Boucher, O., et al., 2010. Geoengineering by stratospheric SO₂ injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmospheric Chemistry and Physics. 10(13), 5999–6006. DOI: https://doi.org/10.5194/acp-10-5999-2010
[11] Alamou, A.E., Obada, E., Biao, E.I., et al., 2022. Impact of Stratospheric Aerosol Geoengineering on Meteorological Droughts in West Africa. Atmosphere. 13(2), 234. DOI: https://doi.org/10.3390/atmos13020234
[12] Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change. 3(1), 52–58. DOI: https://doi.org/10.1038/nclimate1633
[13] Jones, A., Haywood, J.M., Jones, A.C., 2017. Impacts of hemispheric solar geoengineering on tropical cyclone frequency. Nature Communications. 8, 1382. DOI : https://doi.org/10.1038/s41467-017-01606-0
[14] Bonou, F.K., Da-Allada, C.Y., Baloitcha, E., et al., 2023. Stratospheric sulfate aerosols impacts on West African monsoon precipitation using GeoMIP models. Earth’s Future. 11(11), e2023EF003779. DOI: https://doi.org/10.1029/2023EF003779
[15] Alamou, E.A., Zandagba, J.E., Biao, E.I., et al., 2022, Impact of Stratospheric Aerosol Geoengineering on Extreme Precipitation and Temperature Indices in West Africa Using GLENS Simulations. Journal of Geophysical Research: Atmospheres. 127(9), e2021JD035855. DOI : https://doi.org/10.1029/2021JD035855
[16] Kravitz, B., Robock, A., Tilmes, S., et al., 2013. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres. 118(15), 8320–8332. DOI: https://doi.org/10.1002/jgrd.50646
[17] MacMartin, D.G., Kravitz, B., Visioni, D., 2021. Solar geoengineering and the implications for regional climates. Nature Climate Change. 11(1), 26–31.
[18] Riahi, K., van Vuuren, D.P., Kriegler, E., et al., 2017. The shared socio-economic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change. 42, 153–168. DOI: https://doi.org/10.1016/j.gloenvcha.2016.05.009
[19] Krinner, G., Viovy, N., de Noblet-Ducoudré, N., et al., 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles. 19(1), GB1015. DOI: https://doi.org/10.1029/2003GB002199
[20] Kravitz, B., Robock, A., Boucher, O., et al., 2011. The Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Science Letters. 12(2), 162–167. DOI: https://doi.org/10.1002/asl.316
[21] Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society. 93(4), 485–498. DOI: https://doi.org/10.1175/BAMS-D-11-00094.1
[22] Adeniyi, M.O., 2016. The consequences of the IPCC AR5 RCPs 4.5 and 8.5 climate change scenarios on precipitation in West Africa. Climatic Change. 139(2), 245–263. DOI: https://doi.org/10.1007/s10584-016-1774-2
[23] Adeniyi, M.O., Nweke, G.C., 2019. Performance of CMIP5 models in temperature simulation over West Africa. Journal of Nigerian Association of Mathematical Physics. 49, 147–158.
[24] Zebaze, S., Jain, S., Salunke, P., et al., 2019. Assessment of CMIP5 multimodel mean for the historical climate of Africa. Atmospheric Science Letters. 20(8), e926. DOI: https://doi.org/10.1002/asl.926
[25] Dufresne, J.L., Foujols, M.A., Denvil, S., et al., 2013. Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Climate Dynamics. 40(9–10), 2123–2165. DOI: https://doi.org/10.1007/s00382-012-1636-1
[26] Zhang, X., Alexander, L., Hegerl, G.C., et al., 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change. 2(6), 851–870. DOI: https://doi.org/10.1002/wcc.147
[27] Niemeier, U., Timmreck, C., 2015. What is the limit of climate engineering by stratospheric injection of SO₂?. Atmospheric Chemistry and Physics. 15(16), 9129–9141. DOI: https://doi.org/10.5194/acp-15-9129-2015
[28] Visioni, D., MacMartin, D.G., Kravitz, B., et al., 2020. Seasonally modulated stratospheric aerosol geoengineering alters the climate outcomes. Geophysical Research Letters. 47(13), e2020GL088337. DOI: https://doi.org/10.1029/2020GL088337
[29] Haywood, J.M., Jones, A., Bellouin, N., et al., 2013. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nature Climate Change. 3(7), 660–665. DOI: https://doi.org/10.1038/nclimate1857
[30] Abiodun, B.J., Odoulami, R.C., Sawadogo, W., et al., 2021. Potential impacts of stratospheric aerosol injection on drought risk managements over major river basins in Africa. Climatic Change. 169(31), 1–16. DOI: https://doi.org/10.1007/s10584-021-03268-w
[31] Visioni, D., MacMartin, D.G., Kravitz, B., 2021. Is turning down the sun a good proxy for stratospheric sulfate geoengineering? Geophysical Research Letters. 48(7), e2021GL092696. DOI: https://doi.org/10.1029/2020JD033952
[32] Kravitz, B., Robock, A., Tilmes, S., et al., 2017. Climate model response to stratospheric aerosol geoengineering. Journal of Climate. 30(1), 276–299.
[33] Tilmes, S., Fasullo, J., Lamarque, J.-F., et al., 2013. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres. 118(19), 11036–11058. DOI: https://doi.org/10.1002/jgrd.50868
[34] Potts, M., Zulu, E. M., Wehner, M., et al., 2013. Crisis in the Sahel – Possible Solutions and the Consequences of Inaction. OASIS Initiative: University of California, Berkeley. April 9, 2013. Available from: https://africaportal.org/wp-content/uploads/2023/05/Crisis_in_the_Sahel.pdf
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Tji Souleymane Coulibaly, Cheick Diarra, Souleymane Sanogo, Issiaka Traore

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.