Thermal Behavior Analysis of Natural Composites Materials Comprising Diatomaceous Earth and Sugarcane Bagasse

Authors

  • William Villarreal

    Faculty of Engineering, Santo Toribio de Mogrovejo Catholic University, Chiclayo, Lambayeque 14001, Peru

  • Lucio Llontop

    Faculty of Engineering, Santo Toribio de Mogrovejo Catholic University, Chiclayo, Lambayeque 14001, Peru

  • Alberto Hananel

    Faculty of Engineering, Santo Toribio de Mogrovejo Catholic University, Chiclayo, Lambayeque 14001, Peru

DOI:

https://doi.org/10.30564/jbms.v7i3.11522
Received: 7 August 2025 | Revised: 19 August 2025 | Accepted: 8 September 2025 | Published Online: 18 September 2025

Abstract

This work quantifies the thermal performance of natural composite blocks made from Yapatera diatomaceous earth reinforced with sugarcane bagasse fibres. Prismatic specimens (185 × 185 mm) with three thicknesses (≈76 mm, 100 mm, and 150 mm) and bagasse contents of 5–15% (wt.) were tested at hot-face temperatures of 100, 250, and 450 °C in a full-factorial 3 × 3 × 3 plan (54 tests). Thermal conductivity (k) was measured using a guarded hot-plate device aligned with ASTM D5470/E1530/C177. The measured k averaged 0.125 W/m·K (range ~0.088–0.220 W/m·K) and remained stable in function up to 500 °C. ANOVA showed that temperature and thickness significantly increased k (p < 0.05), while fibre content had a weaker, non-monotonic effect beyond ~10%. A response-surface model (RSM) provided accurate predictions (R2 ≈ 0.95). For design purposes, thermal resistance was computed as . A 150 mm block yielded R ≈ 1.20 m2K/W, comparable to ~0.40 m of hollow ceramic brick and > 1.0 m of concrete to reach a similar R. The composite therefore occupies a distinct niche: medium-performance insulation with high-temperature stability (≤ 500 °C), low embodied energy (air-dried manufacturing, agro-waste feedstock), and competitive cost potential. These results support its use in industrial and building applications where conventional insulators are unsustainable or operate below the required temperature window.

Keywords:

Diatomaceous Earth; Sugarcane Bagasse; Thermal Conductivity; Thermal Resistance; Sustainable Insulation; Response Surface Methodology

References

[1] Cengel, Y.A., 2007. Heat and Mass Transfer: A Practical Approach, 3rd ed. McGraw-Hill: New York, NY, USA. (in Spanish)

[2] Holman, J.P., 2012. Experimental Methods for Engineers. McGraw-Hill: New York, NY, USA.

[3] Hahn, D.W., Ozisik, M.N., 2012. Heat Conduction, 3rd ed. John Wiley & Sons: Hoboken, NJ, USA.

[4] Incropera, F.P., DeWitt, D.P., Bergman, T.L., et al., 2008. Fundamentals of Heat Transfer. John Wiley & Sons: Hoboken, NJ, USA. (in Spanish)

[5] Bahadori, A., 2014. Thermal Insulation Handbook for the Oil, Gas, and Petrochemical Industry. Gulf Professional Publishing: Waltham, MA, USA.

[6] Abu-Jdayil, B., Mourad, A.-H.I., Hittini, W., et al., 2019. Traditional, State-of-the-Art, and Renewable Thermal Building Insulation Materials: An Overview. Construction and Building Materials. 214, 709–735. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.102

[7] Abdelrahman, M.A., Ahmad, A., 1991. Cost-Effective Use of Thermal Insulation in Hot Climates. Building and Environment. 26(2), 189–194. DOI: https://doi.org/10.1016/0360-1323(91)90026-8

[8] Guyer, E.C., Brownell, D.L., 1989. Handbook of Applied Thermal Design. Taylor & Francis: Philadelphia, PA, USA.

[9] Ige, J., Pilkington, P., Orme, J., et al., 2019. The Relationship Between Buildings and Health: A Systematic Review. Journal of Public Health. 41(2), e121–e132. DOI: https://doi.org/10.1093/pubmed/fdy138

[10] Panyakaew, S., Fotios, S., 2011. New Thermal Insulation Boards Made From Coconut Husk and Bagasse. Energy and Buildings. 43(7), 1732–1739. DOI: https://doi.org/10.1016/j.enbuild.2011.03.015

[11] Cai, G., Xu, Z., Li, W., et al., 2015. Experimental Investigation on the Thermal Protective Performance of Nonwoven Fabrics Made of High-Performance Fibers. Journal of Thermal Analysis and Calorimetry. 121, 627–632. DOI: https://doi.org/10.1007/s10973-015-4698-6

[12] Chen, J., Huang, Y., Deng, L., et al., 2023. Preparation and Research of PCL/Cellulose Composites: Cellulose Derived From Agricultural Wastes. International Journal of Biological Macromolecules. 235, 123785. DOI: https://doi.org/10.1016/j.ijbiomac.2023.123785

[13] Liu, X., Ai, Q., Zhou, H., et al., 2024. Influence of Fiber Topology on Anisotropic Thermal Conduction Properties of Composite Materials: A Cross-Scale Simulation Study. SSRN preprint. ssrn.4643152. DOI: https://doi.org/10.2139/ssrn.4643152

[14] Rudaz, C., Courson, R., Bonnet, L., et al., 2014. Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel. Biomacromolecules. 15(6), 2188–2195. DOI: https://doi.org/10.1021/bm500345u

[15] Zhang, X., Zhou, J., Wu, K., et al., 2024. Simultaneous Enhancement of Thermal Insulation and Impact Resistance in Transparent Bulk Composites. Advanced Materials. 36(16), 2311817. DOI: https://doi.org/10.1002/adma.202311817

[16] Ali, H., Dixit, S., Alarifi, S., 2024. Development and Characterization Study of Bagasse With Stubble Reinforced Polyester Hybrid Composite. Journal of King Saud University – Science. 36(7), 103231. DOI: https://doi.org/10.1016/j.jksus.2024.103231

[17] Kashcheev, I.D., Popov, A.G., Ivanov, S.E., 2009. Improving the Thermal Insulation of High-Temperature Furnaces by the Use of Diatomite. Refractories and Industrial Ceramics. 50, 98–100. DOI: https://doi.org/10.1007/s11148-009-9158-z

[18] Taoukil, D., El Meski, Y., Lahlaouti, M.I., et al., 2021. Effect of the Use of Diatomite as Partial Replacement of Sand on Thermal and Mechanical Properties of Mortars. Journal of Building Engineering. 42, 103038. DOI: https://doi.org/10.1016/j.jobe.2021.103038

[19] Verdeja, L.F., Ayala, J.M., Llavona, M.A., et al., 1993. Diatomites in Peru. Revista de Minas. 8, 121–129. (in Spanish)

[20] Modarresifar, F., Bingham, P.A., Jubb, G.A., 2016. Thermal Conductivity of Refractory Glass Fibres. Journal of Thermal Analysis and Calorimetry. 125, 35–44. DOI: https://doi.org/10.1007/s10973-016-5367-0

[21] Zapata, C.M., 2019. Use of Diatomite in the Production of Refractory Materials as Thermal Insulation in Industrial Processes [Bachelor Thesis]. Universidad Nacional de Piura: Piura, Peru. pp. 1–91. (in Spanish)

[22] Dai, H., Gao, H., Jiang, B., et al., 2024. Enhancement Effect of Basalt Fiber on the Foamy Kaolinite-Based Composite Thermal Insulator. Journal of Building Engineering. 95, 110144. DOI: https://doi.org/10.1016/j.jobe.2024.110144

[23] Sair, S., Mandili, B., Taqi, M., et al., 2019. Development of a New Eco-Friendly Composite Material Based on Gypsum Reinforced With a Mixture of Cork Fibre and Cardboard Waste for Building Thermal Insulation. Composites Communications. 16, 20–24. DOI: https://doi.org/10.1016/j.coco.2019.08.010

[24] Rein, P.W., 2017. Cane Sugar Engineering, 2nd ed. Verlag Dr. Albert Bartens KG: Berlin, Germany. DOI: https://doi.org/10.36961/cse

[25] Lobo-Ramos, L.L., Osorio-Oyola, Y.C., 2021. Comparative Study of the Thermal Conductivity of Three Natural Insulators with that of Expanded Polystyrene Calculated by Continuous Ice Melting [Bachelor Thesis]. Universidad Magdalena: Santa Marta, Colombia. pp. 38–51. (in Spanish)

[26] Villarreal-Albitres, W., 2005. An Experimental Investigation Into the Effect of Interface Friction on Bagasse Compaction Between Grooved Steel Plates [Master’s Thesis]. James Cook University: North Queensland, Australia. pp. 1–186.

[27] Song, S., Lyu, Y., Zhao, J., et al., 2024. Broadband Sound Absorption Cellulose/Basalt Fiber Composite Paper With Excellent Thermal Insulation and Hydrophobic Properties. Industrial Crops and Products. 218, 118985. DOI: https://doi.org/10.1016/j.indcrop.2024.118985

[28] Yang, K., Zhang, Z., Liu, Y., et al., 2022. Biomass-Based Porous Composites With Heat Transfer Characteristics: Preparation, Performance and Evaluation — A Review. Journal of Porous Materials. 29, 1667–1687. DOI: https://doi.org/10.1007/s10934-022-01296-0

[29] Benavidez, E.R., Brandaleze, E., Lagorio, Y.S., et al., 2015. Thermal and Mechanical Properties of Commercial MgO-C Bricks. Matéria (Rio De Janeiro). 20(3), 571–579. DOI: https://doi.org/10.1590/S1517-707620150003.0058

[30] Freire-Lista, D.M., Fort, R., Varas-Muriel, M.J., 2016. Thermal Stress-Induced Microcracking in Building Granite. Engineering Geology. 206, 83–93. DOI: https://doi.org/10.1016/j.enggeo.2016.03.005

[31] Issarapanacheewin, S., Choomjun, D., Katekaew, W., et al., 2024. Leaching Behavior and Compressive Strength in the Immobilization of Cs-137 Contaminated Electric Arc Furnace Dust via Doping With Activated Carbon. Heliyon. 10(13), e33923. DOI: https://doi.org/10.1016/j.heliyon.2024.e33923

[32] El-Sayed, A.M., Faheim, A.A., Salman, A.A., et al., 2022. Sustainable Lightweight Concrete Made of Cement Kiln Dust and Liquefied Polystyrene Foam Improved With Other Waste Additives. Sustainability. 14(22), 15313. DOI: https://doi.org/10.3390/su142215313

Downloads

How to Cite

Villarreal, W., Llontop, L., & Hananel, A. (2025). Thermal Behavior Analysis of Natural Composites Materials Comprising Diatomaceous Earth and Sugarcane Bagasse. Journal of Building Material Science, 7(3), 183–205. https://doi.org/10.30564/jbms.v7i3.11522