Recent Advances in Predictive Modelling and Material Innovation in Concrete Creep Analysis—A Review

Authors

  • Brian E. Usibe

    Department of Physics, University of Calabar, Calabar 540004, Nigeria

  • Chinedu C. Etteh

    Department of Chemical Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK

  • Nkoyo A. Nkang

    Department of Science Laboratory Technology, University of Calabar, Calabar 540004, Nigeria

  • Abel I. Ushie

    Philosophy of Science, University of Calabar, Calabar 540004, Nigeria

  • Iheoma O. Iwuanyanwu

    Department of Geography and Environmental Science, University of Calabar, Calabar 540004, Nigeria

  • Marijane B. Akan

    Department of Geography and Environmental Science, University of Calabar, Calabar 540004, Nigeria

  • Godwin O. Igomah

    Department of Physics, University of Calabar, Calabar 540004, Nigeria

  • Oruk O. Egbai

    Department of Environmental Resource Management, University of Calabar, Calabar 540004, Nigeria

  • Kelechi Anyikude

    Faculty of Science, Kingsley Ozumba Mbadiwe University, Ideato 475102, Nigeria

  • Akim O. Okang

    Department of Environmental Resource Management, University of Calabar, Calabar 540004, Nigeria

  • Moses E. Aigberemhon

    Department of Electrical/Electronic Engineering, University of Cross River State, Calabar 540281, Nigeria

DOI:

https://doi.org/10.30564/jbms.v7i4.12158
Received: 28 July 2025 | Revised: 18 September 2025 | Accepted: 17 October 2025 | Published Online: 13 November 2025

Abstract

Concrete creep, which is characterised by the gradual, time-dependent deformation under sustained loading, remains a critical factor for structural durability, safety and long-term performance. This review synthesises key advancements in creep research, tracing its evolution from early foundational experimental studies and empirical models such as Bažant’s B3 to contemporary materials innovations and emerging computational frameworks. Novel contributions and notable developments include the integration of Finite Element Analysis (FEA), Bayesian optimisation, and fractional calculus, which have significantly improved predictive accuracy under diverse and varying environmental conditions. The study characterised the pivotal role material innovation plays in this evolution and progression, with recent focus on the development of high-performance and sustainable concretes. These advanced materials include Ultra-High-Performance Concrete (UHPC), Recycled Aggregate Concrete (RAC), Ground Granulated Blast-Furnace Slag (GGBFS) modified concrete, Rice Husk Ash (RHA) composites, and nano-modified concretes, all aimed at enhancing creep resistance and sustainability. The study also examines the influence of temperature, humidity, and sustained stress on creep behaviour, highlighting the need for robust multiscale models. Emerging trends, such as artificial intelligence, mesoscopic modelling, and eco-efficient materials, are identified as transformative tools for future research and applications. By bridging historical insights with modern innovations, this work provides a strategic framework for the design of resilient, durable, and sustainable infrastructure systems in the face of evolving performance demands and environmental challenges.

Keywords:

Stress-Strain Relation; Creep Deformation; Material-Specific Creep; Advanced Materials; Predictive Creep Models; AI-based Deformation Model

References

[1] Harapin, A., Jurišić, M., Bebek, N., et al., 2024. Long-Term Effects in Structures: Background and Recent Developments. Applied Sciences. 14(6), 2352. DOI: https://doi.org/10.3390/app14062352

[2] Yu, M.-H., Li, J.-C., 2012. Stress and Strain. In: Computational Plasticity, Advanced Topics in Science and Technology in China. Springer: Berlin, Germany. pp. 29–52. DOI: https://doi.org/10.1007/978-3-642-24590-9_2

[3] Sadd, M.H., 2014. Elasticity: Theory, Applications, and Numerics, 3rd ed. Academic Press: New York, NY, USA.

[4] Harničárová, M., Valíček, J., Šepeľák, V., 2024. Editorial: Recent advances in the identification of stress-strain states of materials. Frontiers in Materials. 11, 1393286. DOI: https://doi.org/10.3389/fmats.2024.1393286

[5] Faridmehr, I., Shariq, M., Plevris, V., et al., 2022. Novel hybrid informational model for predicting the creep and shrinkage deflection of reinforced concrete beams containing GGBFS. Neural Computing and Applications. 34(15), 13107–13123. DOI: https://doi.org/10.1007/s00521-022-07150-3

[6] Zhang, S., Hamed, E., Song, C., 2023. A numerical and experimental meso-mechanical approach for the prediction of creep of concrete. Computers & Structures. 286, 107109. DOI: https://doi.org/10.1016/j.compstruc.2023.107109

[7] Ding, X., Chen, N., Zhang, Y., et al., 2021. Analytical and Numerical Modelling of Creep Deformation of Viscoelastic Thick-Walled Cylinder with Fractional Maxwell Model. Materials. 14(17), 4849. DOI: https://doi.org/10.3390/ma14174849

[8] Liu, R., Ye, H., Liu, Y., et al., 2021. Numerical simulation of concrete creep behaviour using integral creep algorithm with alternating stresses. Structures. 29, 1979–1987. DOI: https://doi.org/10.1016/j.istruc.2020.11.081

[9] Li, K., Long, Y., Wang, H., et al., 2021. Modeling and Sensitivity Analysis of Concrete Creep with Machine Learning Methods. Journal of Materials in Civil Engineering. 33(8), 04021206. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003843

[10] Xu, T., Zhang, Z., Liu, Z., et al., 2023. Linear and nonlinear creep of UHPC under compression: Experiments, modeling, and verification. Journal of Building Engineering. 72, 106566. DOI: https://doi.org/10.1016/j.jobe.2023.106566

[11] Havlásek, P., Šmilauer, V., Dohnalová, L., et al., 2021. Shrinkage-induced deformations and creep of structural concrete: 1-year measurements and numerical prediction. Cement and Concrete Research. 144, 106402. DOI: https://doi.org/10.1016/j.cemconres.2021.106402

[12] Fanourakis, G.C., Ballim, Y., 2003. Predicting Creep Deformation of Concrete: A Comparison of Results from Different Investigations. in Proceedings of the 11th FIG Symposium on Deformation Measurements. Santorini, Greece, 25–28 May 2003.

[13] Usibe, B.E., Etim, I.P., Ushie, J.O., 2012. Prediction of creep deformation in concrete using some design code models. Latin American Journal of Physics Education. 6(3), 375–379. Available from:

[14] https://www.researchgate.net/publication/303404223_Prediction_of_Creep_Deformation_in_Concrete_Using_Some_Design_Code_Models

[15] Bouras, Y., Li, L., 2023. Prediction of high-temperature creep in concrete using supervised machine learning algorithms. Construction and Building Materials. 400, 132828. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132828

[16] Liang, M., Li, Z., He, S., et al., 2022. Stress evolution in restrained GGBFS concrete due to autogenous deformation: bayesian optimization of aging creep. Construction and Building Materials. 324, 126690. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126690

[17] Chen, Z., Dargahi, M., Sorelli, L., 2025. The Effect of Relative Humidity on Creep Behavior of Cement Paste Microprism. Materials. 18(2), 406. DOI: https://doi.org/10.3390/ma18020406

[18] Korsun, V., Shvets, G., 2020. The calculation of creep deformation of high-strength concrete in relation to the conditions of exposure to elevated temperatures. IOP Conference Series: Materials Science and Engineering. 896(1), 012039. DOI: https://doi.org/10.1088/1757-899X/896/1/012039

[19] Abadel, A.A., Khan, M.I., Masmoudi, R., 2023. Influence of elevated temperature on the engineering properties of ultra-high-performance fiber-reinforced concrete. Materials Science-Poland. 41(1), 140–160. DOI: https://doi.org/10.2478/msp-2023-0010

[20] Zhou, Y., Zhuang, J., Lin, W., et al., 2024. Creep and Shrinkage Properties of Nano-SiO2-Modified Recycled Aggregate Concrete. Materials. 17(8), 1904. DOI: https://doi.org/10.3390/ma17081904

[21] Gao, C., Luo, C., Zhang, B., et al., 2025. Creep behavior evaluation of recycled aggregate concrete using machine learning technology. Journal of Building Engineering. 99, 111538. DOI: https://doi.org/10.1016/j.jobe.2024.111538

[22] Ben Ftima, M., Joder, M., Yildiz, E., 2020. Creep modelling for multi-physical simulation of mass concrete structures using the explicit finite element approach. Engineering Structures. 212, 110538. DOI: https://doi.org/10.1016/j.engstruct.2020.110538

[23] Reybrouck, N., Van Mullem, T., Taerwe, L., et al., 2020. Influence of long‐term creep on prestressed concrete beams in relation to deformations and structural resistance: Experiments and modeling. Structural Concrete. 21(4), 1458–1474. DOI: https://doi.org/10.1002/suco.201900418

[24] Jan, F., Kujawa, M., Paczos, P., et al., 2025. Predicting creep failure life in adhesive-bonded single-lap joints using machine learning. Scientific Reports. 15(1), 6902. DOI: https://doi.org/10.1038/s41598-025-91832-0

[25] Torres, P.P., Ghorbel, E., Wardeh, G., 2021. Towards a New Analytical Creep Model for Cement-Based Concrete Using Design Standards Approach. Buildings. 11(4), 155. DOI: https://doi.org/10.3390/buildings11040155

[26] Chen, J., Gong, L., Meng, R., 2024. Application of Fractional Calculus in Predicting the Temperature-Dependent Creep Behavior of Concrete. Fractal and Fractional. 8(8), 482. DOI: https://doi.org/10.3390/fractalfract8080482

[27] Luo, X., Zhou, Y., Yi, F., et al., 2024. Modeling time-dependent deformation in concrete: A fractional calculus method with finite element implementation. Journal of Building Engineering. 95, 110171. DOI: https://doi.org/10.1016/j.jobe.2024.110171

[28] Bazant, Z.P., Chern, J.C., 1985. Concrete creep at variable humidity: constitutive law and mechanism. Materials and Structures. 18(1), 1–20. DOI: https://doi.org/10.1007/BF02473360

[29] Iskhakov, I., Ribakov,Y., 2021.A new concrete creep model with minimum empirical coefficients. Revista Romana de Materiale. 51(4), 528–535. Available from: https://solacolu.chim.upb.ro/pg528-535.pdf

[30] Baker, S.P., Vinci, R.P., Arias, T., 2002. Elastic and Anelastic Behavior of Materials in Small Dimensions. MRS Bulletin. 27(1), 26–29. DOI: https://doi.org/10.1557/mrs2002.16

[31] Egami, T., Iwashita, T., Dmowski, W., 2013. Mechanical Properties of Metallic Glasses. Metals. 3(1), 77–113. DOI: https://doi.org/10.3390/met3010077

[32] Steigmann, D.J., 2023. Elastic and plastic deformations. In: A Course on Plasticity Theory. Oxford University Press: Oxford, UK. pp. 74–86. DOI: https://doi.org/10.1093/oso/9780192883155.003.0005

[33] Saifoori, S., Nezamabadi, S., Ghadiri, M., 2024. Analysis of impact deformation of elastic-perfectly plastic particles. Computational Particle Mechanics. 11(6), 2629–2640. DOI: https://doi.org/10.1007/s40571-024-00742-x

[34] Spyromilios, A., Komvopoulos, K., 2024. Elastic inclusion effects on deformation behavior of indented elastic-plastic solids. Acta Mechanica. 235(9), 5925–5936. DOI: https://doi.org/10.1007/s00707-024-03981-4

[35] Dabarera, A., Li, L., Dao, V., 2021. Experimental evaluation and modelling of early-age basic tensile creep in high-performance concrete. Materials and Structures. 54(3), 130. DOI: https://doi.org/10.1617/s11527-021-01722-w

[36] Yu, L., Xia, J., Pu, H., et al., 2025. Creep characteristics and models of unconfined and BFRP-confined coal gangue concrete. Journal of Building Engineering. 99, 111600. DOI: https://doi.org/10.1016/j.jobe.2024.111600

[37] Qin, X., Xu, Z., Liu, M., et al., 2025. Mechanical Properties and Elastic Modulus Prediction of Mixed Coal Gangue Concrete. Materials. 18(6), 1240. DOI: https://doi.org/10.3390/ma18061240

[38] Dinkha, Y.Z., Yousif, S.T., 2021. Time Dependent Properties of Concrete: A State of the Art Review. Journal of Civil Engineering Frontiers. 2(02), 44–56. DOI: https://doi.org/10.38094/jocef20237

[39] Kern, B., Podhajecky, A.-L., Lohaus, L., et al., 2024. Deformation behaviour of concrete with different moisture contents subjected to compressive creep and cyclic loading. Materials and Structures. 57(6), 131. DOI: https://doi.org/10.1617/s11527-024-02399-7

[40] Delsaute, B., Torrenti, J.M., Nedjar, B., et al., 2024. Modeling compressive basic creep of concrete at early age. Mechanics of Time-Dependent Materials. 28(1), 143–162. DOI: https://doi.org/10.1007/s11043-024-09668-6

[41] Ávila Calderón, L.A., Rehmer, B., Schriever, S., et al., 2022. Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion. Materials Science and Engineering: A. 830, 142223. DOI: https://doi.org/10.1016/j.msea.2021.142223

[42] Xu, Q., Lu, Z., 2020. Modeling of Creep Deformation and Creep Fracture. In: Jaramillo S., H., Arnaldo Avila, J., Chen, C. (Eds.). Strength of Materials. IntechOpen: London, UK. DOI: https://doi.org/10.5772/intechopen.89009

[43] Pandey, C., Mahapatra, M.M., Kumar, P., et al., 2017. Effect of creep phenomena on room-temperature tensile properties of cast & forged P91 steel. Engineering Failure Analysis. 79, 385–396. DOI: https://doi.org/10.1016/j.engfailanal.2017.05.025

[44] Zhang, Y., Mao, J., Jin, W., et al., 2022. Creep model of high-performance concrete at different loading ages. Construction and Building Materials. 357, 129379. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129379

[45] Schmidt, B., Herbers, M., Schacht, G., Marx, S., et al., 2022. Creep of concrete at high age of loading. In Proceedings of the 6th FIB Congress. Oslo, Norway, 12 June 2022. Available from: https://www.researchgate.net/publication/364675224_Creep_Of_Concrete_at_High_Age_of_Loading

[46] Jia, Y., Xue, C., Wang, H., et al., 2024. Tensile creep performance and modeling of ultra early-age cement paste under high stress levels. Construction and Building Materials. 452, 138925. DOI: https://doi.org/10.1016/j.conbuildmat.2024.138925

[47] Youssef, M.A., Moftah, M., 2007. General stress—strain relationship for concrete at elevated temperatures. Engineering Structures. 29(10), 2618–2634. DOI: https://doi.org/10.1016/j.engstruct.2007.01.002

[48] Callister, W.D., Rethwisch, D.G., 2020. Materials Science and Engineering: An Introduction, 10th ed. Wiley: Hoboken, NJ, USA.

[49] Kaklauskas, G., Ghaboussi, J., 2001. Stress-Strain Relations for Cracked Tensile Concrete from RC Beam Tests. Journal of Structural Engineering. 127(1), 64–73. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(64)

[50] Sultan, W., Hamza, D., 2022. Formulation of Mathematical Model for Stress-Strain Relationship of Normal and High Strength Concrete Under Compression. SSRN Electronic Journal. DOI: https://doi.org/10.2139/ssrn.4034007

[51] Chabane, A., Belebchouche, C., Bensebti, S.-E., et al., 2022. Comparison of the accuracy of regulation models for self-compacting concrete creep evaluation. Journal of Building Engineering. 59, 105069. DOI: https://doi.org/10.1016/j.jobe.2022.105069

[52] Majorana, C.E., 1989. Book Review: Mathematical modeling of creep and shrinkage of concrete. Communications in Applied Numerical Methods. 5(6), 423–423. DOI: https://doi.org/10.1002/cnm.1630050609

[53] Starodubsky, S., Blechman, I., Livneh, M., 1994. Stress-strain relationship for asphalt concrete in compression. Materials and Structures. 27(8), 474–482. DOI: https://doi.org/10.1007/BF02473452

[54] Engineering eNotes, 2025. Creep of Concrete: Factors, Measurement and Magnitude. Available from: https://www.engineeringenotes.com/concrete-technology/concrete/creep-of-concrete-factors-measurement-and-magnitude-concrete-technology/31548 (cited 30 June 2025).

[55] Bažant, Z.P., 2001. Prediction of concrete creep and shrinkage: past, present and future. Nuclear Engineering and Design. 203(1), 27–38. DOI: https://doi.org/10.1016/S0029-5493(00)00299-5

[56] Daou, H., Raphael, W., 2021. A Bayesian regression framework for concrete creep prediction improvement: application to Eurocode 2 model. Research on Engineering Structures and Materials. DOI: https://doi.org/10.17515/resm2021.272ma0303

[57] Mondali, M., Abedian, A., Ghavami, A., 2009. A new analytical shear-lag based model for prediction of the steady state creep deformations of some short fiber composites. Materials & Design. 30(4), 1075–1084. DOI: https://doi.org/10.1016/j.matdes.2008.06.039

[58] Dezheng, L., Qiang, X., Zhongyu, L., et al., 2013. The development of finite element analysis software for creep damage analysis. CSREA Press: Las Vegas, NV, USA. Available from: https://eprints.hud.ac.uk/id/eprint/21857/?template=default_internal

[59] Adam, I.A., Hodhod, O., Alesnawi, H., et al., 2019. Creep Behavior of Nano Silica Concrete under Different Stress Levels. Life Science Journal. 16(9). Available from: lifesciencesite.com/lsj/lsj160919/09_35397lsj160919_67_77.pdf

[60] Tran, K.B., Nguyen, Q.S., Truong, T.T., 2019. Creep analysis of concrete beams and flat slabs using finite element method. Journal of Science and Engineering. 1(1), 46–55. Available from: https://www.jstage.jst.go.jp/article/sjse/1/1/1_46/_pdf

[61] Janusz Hołowaty, 2015. Creep of Concrete in Contemporary Code-Type Models. Journal of Civil Engineering and Architecture. 9(9). DOI: https://doi.org/10.17265/1934-7359/2015.09.002

[62] Bažant, Z.P., Hubler, M.H., Yu, Q., 2015. Damage in Prestressed Concrete Structures due to Creep and Shrinkage of Concrete. In: Voyiadjis, G.Z. (Ed.). Handbook of Damage Mechanics. Springer: New York, NY, USA. pp. 515–564. DOI: https://doi.org/10.1007/978-1-4614-5589-9_49

[63] He, Z., Li, L., Du, S., 2017. Creep analysis of concrete containing rice husk ash. Cement and Concrete Composites. 80, 190–199. DOI: https://doi.org/10.1016/j.cemconcomp.2017.03.014

[64] Hong, S.-H., Choi, J.-S., Yuan, T.-F., et al., 2023. A review on concrete creep characteristics and its evaluation on high-strength lightweight concrete. Journal of Materials Research and Technology. 22, 230–251. DOI: https://doi.org/10.1016/j.jmrt.2022.11.125

[65] Lu, J.-X., 2023. Recent advances in high strength lightweight concrete: From development strategies to practical applications. Construction and Building Materials. 400, 132905. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132905

[66] Huang, Y., Wang, J., Wei, Q., et al., 2023. Creep behaviour of ultra-high-performance concrete (UHPC): A review. Journal of Building Engineering. 69, 106187. DOI: https://doi.org/10.1016/j.jobe.2023.106187

[67] Mohammadi, H., Nilforoushan, M.R., Tayebi, M., 2020. Effect of nanosilica addition on bioactivity and in vivo properties of calcium aluminate cement. Ceramics International. 46(4), 4335–4343. DOI: https://doi.org/10.1016/j.ceramint.2019.10.156

[68] Guo, R., Zhang, Q., Wang, Z., et al., 2022. The Effect of Eco-Friendly Inhibitors on the Corrosion Properties of Concrete Reinforcement in Harsh Environments. Materials. 15(14), 4746. DOI: https://doi.org/10.3390/ma15144746

[69] Dehkordi, B.A., Nilforoushan, M.R., Talebian, N., et al., 2021. A comparative study on the self-cleaning behavior and antibacterial activity of Portland cement by addition of TiO2 and ZnO nanoparticles. Materials Research Express. 8(3), 035403. DOI: https://doi.org/10.1088/2053-1591/abef41

[70] Usibe, B.E., Menshykov, O.V., 2021. Evaluation of Dynamic Stress Intensity Factor of Griffith Crack Using the Finite Element Method. International Journal of Mechanics and Applications. 10 (1), 1–10. Available from: http://article.sapub.org/10.5923.j.mechanics.20211001.01.html

[71] Usibe, B.E., Azogor, W.E., Iwuji, P.C., et al., 2024. Finite Element Analysis of a Dynamic Linear Crack Problem. East European Journal of Physics. (4), 537–544. DOI: https://doi.org/10.26565/2312-4334-2024-4-63

[72] Donea, J., 1978. The application of computer methods to creep analysis. In: Bernasconi, G., Piatti, G. (Eds.). Creep of engineering materials and structures. Applied Science Publishers: London, UK.

[73] Godoy Dellepiani, M., Rojas Vega, C., Pina, J.C., et al., 2020. Numerical investigation on the creep response of concrete structures by means of a multi-scale strategy. Construction and Building Materials. 263, 119867. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119867

[74] Liu, Y., Schindler, A.K., 2020. Finite-Element Modeling of Early-Age Concrete Stress Development. Journal of Materials in Civil Engineering. 32(1), 04019338. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002988

[75] Bazant, Z.P., Rossow, E.C., Horrigmoe, G., 1981. Finite-element program for creep analysis of concrete structures. Available from: http://cee.northwestern.edu/people/bazant/PDFs/Papers%20-%20Backup%202_20_2013/P018.pdf (cited 30 June 2025).

[76] Hsu, T.-R., 1986. Creep Deformation of Solids by Finite Element Analysis. In: The Finite Element Method in Thermomechanics. Springer: Dordrecht, The Netherlands. pp. 113–124. DOI: https://doi.org/10.1007/978-94-011-5998-2_4

[77] Guerreiro, J.N.C., Loula, A.F.D., Boyle, J.T., 1991. Finite Element Methods in Stress Analysis for Creep. In: Życzkowski, M. (Ed.). Creep in Structures. Springer: Berlin, Germany. pp. 485–502. DOI: https://doi.org/10.1007/978-3-642-84455-3_56

[78] Ben Ftima, M., Chéruel, A., Argouges, M., 2023. Multi-physical Simulation of Concrete Hydraulic Facilities Affected by Alkali-Aggregate Reaction: From Material to Structure. In: Rossi, P., Tailhan, J.-L. (Eds.). Numerical Modeling Strategies for Sustainable Concrete Structures, RILEM Bookseries. Springer International Publishing: Cham, Switzerland. pp. 47–60. DOI: https://doi.org/10.1007/978-3-031-07746-3_5

[79] Zhao, J., Zhao, W., Xie, K., et al., 2023. A Fractional Creep Constitutive Model Considering the Viscoelastic—Viscoplastic Coexistence Mechanism. Materials. 16(18), 6131. DOI: https://doi.org/10.3390/ma16186131

[80] Le, Q.X., Torero, J.L., Dao, V.T.N., 2021. Stress-strain-temperature relationship for concrete. Fire Safety Journal. 120, 103126. DOI: https://doi.org/10.1016/j.firesaf.2020.103126

[81] Huang, Y., Wang, Y., Wang, R., et al., 2021. Fractional‐order freezing‐and‐thawing damage model for hydraulic concrete subjected to variable temperature processes. Structural Concrete. 22(S1). DOI: https://doi.org/10.1002/suco.201900391

[82] Luo, X., Zhou, Y., Yi, W., 2025. Time-dependent axial deformation of concrete: Development of a fractional calculus-based constitutive model. Engineering Structures. 333, 120132. DOI: https://doi.org/10.1016/j.engstruct.2025.120132

[83] Howard, G.J., 2017. Finite element modelling of creep for an industrial application [Master’s thesis]. University of Pretoria: Pretoria, South Africa. Available from: https://repository.up.ac.za/bitstreams/35de3ac5-941d-4506-8dc4-b85311c62447/download

[84] Pan, G., Song, T., Li, P., et al., 2025. Review on finite element analysis of meso-structure model of concrete. Journal of Materials Science. 60(1), 32–62. DOI: https://doi.org/10.1007/s10853-024-10493-y

[85] Redžić, N., Grgić, N., Baloević, G., 2025. A Review on the Behavior of Ultra-High-Performance Concrete (UHPC) Under Long-Term Loads. Buildings. 15(4), 571. DOI: https://doi.org/10.3390/buildings15040571

[86] Huang, H., Garcia, R., Huang, S.-S., et al., 2019. A practical creep model for concrete elements under eccentric compression. Materials and Structures. 52(6), 119. DOI: https://doi.org/10.1617/s11527-019-1432-z

[87] Fang, Y., Mao, J., Zhang, Y., et al., 2021. Calculation of Deflection and Stress of Assembled Concrete Composite Beams under Shrinkage and Creep and Its Application in Member Design Optimization. KSCE Journal of Civil Engineering. 25(9), 3458–3476. DOI: https://doi.org/10.1007/s12205-021-2092-4

[88] Ding, Y., Fang, Y., Jin, W., et al., 2023. Numerical Method for Creep Analysis of Strengthened Fatigue-Damaged Concrete Beams. Buildings. 13(4), 968. DOI: https://doi.org/10.3390/buildings13040968

[89] Kazemi, F., Shafighfard, T., Yoo, D.-Y., 2024. Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review. Archives of Computational Methods in Engineering. 31(4), 2049–2078. DOI: https://doi.org/10.1007/s11831-023-10043-w

[90] Mirzabozorg, H., Ebadi, S., 2025. Unveiling the hidden impact: long-term creep effects on high concrete arch dams—a paradigm shift in structural analysis and design. Innovative Infrastructure Solutions. 10(1), 1. DOI: https://doi.org/10.1007/s41062-024-01809-7

[91] Šmilauer, V., Dohnalová, L., Jirásek, M., et al., 2023. Benchmarking Standard and Micromechanical Models for Creep and Shrinkage of Concrete Relevant for Nuclear Power Plants. Materials. 16(20), 6751. DOI: https://doi.org/10.3390/ma16206751

[92] Usibe, B.E., Menkiti, A.I., Onuu, M.U., et al., 2013. Development and analysis of a potential nanosensor communication network using carbon nanotubes. International Journal of Materials Engineering. 3(1), 4–10.

[93] Haque, M.S., Kadri, Z.A., 2025. Machine Learning Models for Creep Rupture Prediction of Inconel 617. Journal of Pressure Vessel Technology. 147(4), 041501. DOI: https://doi.org/10.1115/1.4068122

[94] Ghasemzadeh, F., Manafpour, A., Sajedi, S., et al., 2016. Predicting long-term compressive creep of concrete using inverse analysis method. Construction and Building Materials. 124, 496–507. DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.137

[95] Zhou, Y., Chen, W., Yan, P., 2022. Measurement and modeling of creep property of high-strength concrete considering stress relaxation effect. Journal of Building Engineering. 56, 104726. DOI: https://doi.org/10.1016/j.jobe.2022.104726

[96] Xia, K., Chen, Yuning, Chen, Yu, et al., 2024. Understanding and modeling the plastic deformation of 3D printed concrete based on viscoelastic creep behavior. Additive Manufacturing. 84, 104132. DOI: https://doi.org/10.1016/j.addma.2024.104132

[97] Mehta, P.K., Monerio, P.J., 2016. Concrete: Microstructure, Properties and Materials. McGraw-Hill Education: New York, NY, USA.

[98] Zang, C., Chen, M., Zhang, G., et al., 2020. Research on the failure process and stability control technology in a deep roadway: Numerical simulation and field test. Energy Science & Engineering. 8(7), 2297–2310. DOI: https://doi.org/10.1002/ese3.664

[99] Shaowei, W., Jiangbo, X., Xiong, W., et al., 2025. Creep constitutive model of coral sand. Bulletin of Engineering Geology and the Environment. 84(2), 85. DOI: https://doi.org/10.1007/s10064-025-04120-6

[100] Bažant, Z.P., 1975. Theory of Creep and Shrinkage in Concrete Structures: A Précis of Recent Developments, in: Mechanics Today. Elsevier. 2(1), 1–93. DOI: https://doi.org/10.1016/B978-0-08-018113-4.50007-0

[101] Kowalewski, Z.L., Ustrzycka, A., 2020. Creep Deformation. In: Altenbach, H., Öchsner, A. (Eds.). Encyclopedia of Continuum Mechanics. Springer: Berlin, Germany. pp. 499–508. DOI: https://doi.org/10.1007/978-3-662-55771-6_157

[102] Ma, Z., Yan, P., Cheng, S., et al., 2023. Experimental study of the dynamic mechanical responses and failure characteristics of coal under true triaxial confinements. International Journal of Mining Science and Technology. 33(6), 761–772. DOI: https://doi.org/10.1016/j.ijmst.2023.03.002

[103] Lagneborg, R., 1978. Creep deformation mechanisms. In: Bernasconi, G., Piatti, G. (Eds.). Creep of engineering materials and structures.Applied Science Publishers: London, UK.

[104] Naville, A., Creep of concrete and behaviour of structures. Part 1: problems of Concrete International. Concrete International. 24(5), 59–66.

[105] Lukin, M.V., Popov, M.V., Lisyatnikov, M.S., 2020. Short-term and Long-Term Deformations of the Lightweight Concrete. IOP Conference Series: Materials Science and Engineering. 753(3), 032071. DOI: https://doi.org/10.1088/1757-899X/753/3/032071

[106] He, M., Sui, Q., Tao, Z., 2023. Excavation compensation theory and supplementary technology system for large deformation disasters. Deep Underground Science and Engineering. 2(2), 105–128. DOI: https://doi.org/10.1002/dug2.12043

[107] Encardio Rite, 2023. Revolutionising Structural Health Monitoring with AI, ML, IoT, and Sensor Technology. Available from: https://www.encardio.com/blog/ai-ml-structural-health-monitoring (cited 1 July 2025).

[108] Spandana, A.P., Shetty, S., Shravya, P.,et al., 2024. Real-time structural health monitoring system using IoT. Available from: https://iipseries.org/assets/docupload/rsl2024A5B36F2286E8821.pdf (cited 30 June 2025).

[109] Fawad, M., Salamak, M., Hanif, M.U., et al., 2024. Integration of Bridge Health Monitoring System With Augmented Reality Application Developed Using 3D Game Engine—Case Study. IEEE Access. 12, 16963–16974. DOI: https://doi.org/10.1109/ACCESS.2024.3358843

[110] Akbar, S., Carlie, M., 2021. Long-term deformation of balanced cantilever bridges due to non-uniform creep and shrinkage [Master’s thesis]. KTH Royal Institute of Technology: Stockholm, Sweden. Available from: https://kth.diva-portal.org/smash/get/diva2:1589566/FULLTEXT01.pdf

Downloads

How to Cite

Usibe, B. E., Etteh, C. C., Nkang, N. A., Ushie, A. I., Iwuanyanwu, I. O., Akan, M. B., Igomah, G. O., Egbai, O. O., Anyikude, K., Okang, A. O., & Aigberemhon, M. E. (2025). Recent Advances in Predictive Modelling and Material Innovation in Concrete Creep Analysis—A Review. Journal of Building Material Science, 7(4), 29–53. https://doi.org/10.30564/jbms.v7i4.12158