Effects of Raw Materials, Sintering Conditions, and Stabilizers on High Volume M3-Alite Synthesis

Authors

  • Rajesh Kumar

    1. Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; 2. Advanced Concrete, Steel & Composites (ACSC) Group, CSIR-Central Building Research Institute, Roorkee 247667, India

  • Shashank Bishnoi

    Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India

  • Nagasubramanian Gopalakrishnan

    Advanced Concrete, Steel & Composites (ACSC) Group, CSIR-Central Building Research Institute, Roorkee 247667, India

DOI:

https://doi.org/10.30564/jbms.v7i2.9181
Received: 21 March 2025 | Revised: 12 April 2025 | Accepted: 14 April 2025 | Published Online: 5 June 2025

Abstract

The study presents the process to synthesize and characterize the M3 polymorph of Tricalcium oxy silicate, also known as alite (Ca3O(SiO4)), a major component in Portland cement. An optimized solid-state reaction protocol has been established for synthesizing high volume pure M3-alite. The effects of raw materials, sintering conditions, degree of compaction, and stabilizers were studied on the synthesis process of the pure phase. The synthesized M3-alite powder was analyzed using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and particle size analysis. The results indicated that high volume M3-alite polymorph (800 gm in one cycle) can be synthesized with a purity higher than 95% by sintering under optimized raw materials and sintering conditions at 1650 °C for 180 minutes without compaction techniques. Stabilization of the M3 polymorph also involved the addition of MgO as well as Al2O3 as stabilizers. XRD analysis confirmed the formation of the monoclinic structure (M3) of alite. The synthesized powder showed a d₅₀ of 13.85 μm, a BET surface area of 777.8 ± 50 m²/kg, and a density of 3.14 ± 0.05 g/cm³. This optimization process allows efficient production of a superior quality M3-alite polymorph that is required in low carbon cement research for a better understanding of different attributes after the addition of chemical and mineral admixtures at different environmental conditions.

Keywords:

Alite; Doping; Low Carbon Cement; Polymorph; X-ray Diffraction

References

[1] Plank, J., 2020. On the correct chemical nomenclature of C3S, tricalcium oxy silicate. Cement and Concrete Research. 130, 105957. DOI: https://doi.org/10.1016/j.cemconres.2019.105957

[2] Taylor. H. F. W., 1997. Cement chemistry. DOI: https://doi.org/10.1680/cc.25929

[3] Sun, F., Pang, X., Wei, J., et al., 2023. Synthesis of alite, belite and ferrite in both monophase and polyphase states and their hydration behavior. Journal of Materials Research and Technology. 25, 3901–3916. DOI: https://doi.org/10.1016/j.jmrt.2023.06.151

[4] Moranville-Regourd, M., Boikova, A.I., 1992. Chemistry, structure, properties and quality of clinker. Proceedings of The ninth international congress on the chemistry of cement; 7–11 September 1992; New Delhi, India. pp. 23–45.

[5] Dunstetter, F., de Noirfontaine, M.-N., Courtial, M., 2006. Polymorphism of tricalcium silicate, the major compound of Portland cement clinker. Cement and Concrete Research. 36(1), 39–53. DOI: https://doi.org/10.1016/j.cemconres.2004.12.003

[6] Dvořák, K., Všianský, D., Ravaszová, S., et al., 2023. Synthesis of M1 and M3 alite polymorphs and accuracy of their quantification. Cement and Concrete Research. 163, 107016. DOI: https://doi.org/10.1016/j.cemconres.2022.107016

[7] Li, X., Ouzia, A., Scrivener, K., 2018. Laboratory synthesis of C3S on the kilogram scale. Cement and Concrete Research. 108, 201–207. DOI: https://doi.org/10.1016/j.cemconres.2018.03.019

[8] Ye, Q., Liu, B., Xue, J., 1989. Crystal chemistry study on the solid solutions of tricalcium silicate containing fluorine and sulfur. Guisuanyan Xuebao. 17, 97-104, 1989.

[9] Bazzoni, A., Cantoni, M., Scrivener, K. L., 2013. Impact of Annealing on the Early Hydration of Tricalcium Silicate. Journal of the American Ceramic Society. 97(2), 584–591. Portico. DOI: https://doi.org/10.1111/jace.12691

[10] Wesselsky, A., Jensen, O. M., 2009. Synthesis of pure Portland cement phases. Cement and Concrete Research. 39(11), 973–980. DOI: https://doi.org/10.1016/j.cemconres.2009.07.013

[11] Števula, L., Petrovič, J., 1981. Hydration of polymorphic modification C3S. Cement and Concrete Research. 11(2). 183–190. DOI: https://doi.org/10.1016/0008-8846(81)90058-2

[12] Tenório, J. A. S., Pereira, S. S. R., Ferreira, A. V., Espinosa, D. C. R., et al., CCT diagrams of tricalcium silicate decomposition. Advances in Cement Research. 20(1), 31–33. DOI: https://doi.org/10.1680/adcr.2008.20.1.31

[13] Stephan, D., Maleki, H., Knöfel, D., et al., 1999. Influence of Cr, Ni, and Zn on the properties of pure clinker phases: Part I. C3S. Cement and Concrete Research. 29(4), 545–552. DOI: https://doi.org/10.1016/S0008-8846(99)00009-5

[14] Mohan K., Glasser, F. P., 1977. The thermal decomposition of Ca3SiO5 at temperatures below 1250°C I. Pure C3S and the influence of excess CaO or Ca2SiO4. Cement and Concrete Research. 7(1), 1–7. DOI: https://doi.org/10.1016/0008-8846(77)90002-3

[15] Bazzoni, A., Ma, S., Wang, Q., et al., 2014. The Effect of Magnesium and Zinc Ions on the Hydration Kinetics of C3S. Journal of the American Ceramic Society. 97(11), 3684–3693. Portico. DOI: https://doi.org/10.1111/jace.13156

[16] Chen, Q. Y., Hills, C. D., Tyrer, M., et al., 2007. Characterisation of products of tricalcium silicate hydration in the presence of heavy metals. Journal of Hazardous Materials. 147(3), 817–825. DOI: https://doi.org/10.1016/j.jhazmat.2007.01.136

[17] ODLER, I., ABDUL‐MAULA, S., 1983. Polymorphism and Hydration of Tricalcium Silicate Doped With ZnO. Journal of the American Ceramic Society. 66(1), 1–04. Portico. DOI: https://doi.org/10.1111/j.1151-2916.1983.tb09956.x

[18] De la Torre, Á. G., De Vera, R. N., Cuberos, A. J. M., et al., 2008. Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis. Cement and Concrete Research. 38(11), 1261–1269. DOI: https://doi.org/10.1016/j.cemconres.2008.06.005

[19] De la Torre, A. G., Bruque, S., Campo, J., et al., 2002. The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses. Cement and Concrete Research. 32(9), 1347–1356. DOI: https://doi.org/10.1016/S0008-8846(02)00796-2

[20] de Noirfontaine, M. N., Courtial, M., Dunstetter, F., et al., 2000. Tricalcium Silicate Ca3SiO5: the major compound of anhydrous Portland cement revisited. Acta Crystallographica Section A. 56, 159. DOI: https://doi.org/10.1107/S0108767300023680

[21] Aldous, R. T. H., 1983. The hydraulic behaviour of rhombohedral alite. Cement and Concrete Research. 13(1), 89–96. DOI: https://doi.org/10.1016/0008-8846(83)90131-X

[22] Zhang, Y., Zhang, X., 2008. Research on effect of limestone and gypsum on C3A, C3S and PC clinker system. Construction and Building Materials. 22(8), 1634–1642. DOI: https://doi.org/10.1016/j.conbuildmat.2007.06.013

[23] Quennoz, A., Scrivener, K. L., 2013. Interactions between alite and C3A-gypsum hydrations in model cements. Cement and Concrete Research. 44, 46–54. DOI: https://doi.org/10.1016/j.cemconres.2012.10.018

[24] Mota, B., Matschei, T., Scrivener, K., 2015. The influence of sodium salts and gypsum on alite hydration. Cement and Concrete Research. 75, 53–65. DOI: https://doi.org/10.1016/j.cemconres.2015.04.015

[25] Zunino, F., Scrivener, K., 2020. Factors influencing the sulfate balance in pure phase C3S/C3A systems. Cement and Concrete Research. 133, 106085. DOI: https://doi.org/10.1016/j.cemconres.2020.106085

[26] Da, Y., He, T., Shi, C., et al., 2021. Studies on the formation and hydration of tricalcium silicate doped with CaF2 and TiO2. Construction and Building Materials. 266, 121128. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121128

[27] Costoya, M., Bishnoi, S., Gallucci, E., et al., 2007. Synthesis and hydration of tricalcium silicate. In Proceedings of the XII. International congress on the chemistry of cement. Montreal (Canada). pp. 1-11. DOI: https://iccc-online.org/fileadmin/gruppen/iccc/proceedings/12/pdf/fin00178.pdf (cited 10 September 2024).

[28] Kingery, W. D., Kent Bowen, H., Uhlmann, D. R., 1976. Introduction to ceramics. New York: Wiley.

[29] Yen, C.-L., Tseng, D.-H., Lin, T.-T., 2011. Characterization of eco-cement paste produced from waste sludges. Chemosphere. 84(2), 220–226. DOI: https://doi.org/10.1016/j.chemosphere.2011.04.050

[30] Telschow, S., Frandsen, F., Theisen, K., et al., 2012. Cement Formation—A Success Story in a Black Box: High Temperature Phase Formation of Portland Cement Clinker. Industrial & Engineering Chemistry Research. 51(34), 10983–11004. DOI: https://doi.org/10.1021/ie300674j

[31] Fang, Y., Liu, Z., Wang, Q., et al., 2020. Strength Development and Products Evolution of β-C2S and γ-C3S Induced by Accelerated Carbonation Curing. Journal of Wuhan University of Technology-Mater. Sci. Ed. 35(6), 1053–1060. DOI: https://doi.org/10.1007/s11595-020-2355-9

[32] Kabir, H., Hooton, R. D., Popoff, N. J., 2020. Evaluation of cement soundness using the ASTM C151 autoclave expansion test. Cement and Concrete Research. 136, 106159. DOI: https://doi.org/10.1016/j.cemconres.2020.106159

[33] Arong, S., Murakami, H., Ichikawa, Y., 2020. Utilization of svm in the soundness evaluation of reinforced concrete slab bridge. Journal of JSCE. 8(1), 59–70. DOI: https://doi.org/10.2208/JOURNALOFJSCE.8.1_59

[34] Sun, F., Pang, X., Wei, J., et al., 2024. Stability of calcium silicate hydrates produced by alite hydration at high and ultrahigh temperatures. Cement and Concrete Research. 179, 107469. DOI: https://doi.org/10.1016/j.cemconres.2024.107469

[35] Hemstad, P., Kjellemyr, P., Weerdt, K. D., 2024. Determining the Influence of Curing Temperature and SCMs on C-A-S-H Composition Using SEM-EDS Hypermaps. Nordic Concrete Research. 70(1), 125–146. DOI: https://doi.org/10.2478/ncr-2024-0006

Downloads

How to Cite

Rajesh Kumar, Bishnoi, S., & Nagasubramanian Gopalakrishnan. (2025). Effects of Raw Materials, Sintering Conditions, and Stabilizers on High Volume M3-Alite Synthesis. Journal of Building Material Science, 7(2), 47–57. https://doi.org/10.30564/jbms.v7i2.9181